
TACTICS ENGINE

Page. 1

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

The Official

Tactics Engine
 Artificial Intelligence Personalities (AIP)

and
Scenario End Conditions

Guide

TACTICS ENGINE

Page. 2

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Conditions of use

Permission to use the manual contained in this site (“Manual”) is conditional upon
you agreeing to the terms set out below. Do not proceed to download the manual
until you have read and accepted all the conditions. If you do not wish to accept the
conditions, do not download the Manual.

The user is granted a non-exclusive licence to download and use the Manual
contained in this site on the following conditions;

1. The Manual download from this site remains the property of Auran;

2. The Manual downloaded from this site, in whole or in part may be used:

(a) to configure the Tactics software engine; or

(b) in conjunction with other software packages or programs,

provided that:

(c) such use is not for a commercial purpose or any financial gain; and

(d) these conditions are included without alteration wherever the Manual is
reproduced;

3. Auran cannot warrant the performance or the results obtained from using the
Manual contained in this site;

4. Auran makes no warranties, express or implied with respect to the Manual
as to merchantability or fitness for purpose or nonconfringement of third parties
rights but in the event that any legislation implies terms which cannot be lawfully
excluded, such terms will apply except that the liability of Auran for breach of any
such implied term will be limited to replacement of the Manual to which the breach
relates or the supply of an equivalent manual;

5. Auran will not be liable for any damages whatsoever including;

(a) direct, indirect, incidental, consequential damages; or

(b) loss of business profits; or

(c) special damages,

arising from the use of the Manual contained in this site, even if Auran has been
notified of the potential for such damages to arise;

6. The user acknowledges:

(a) they have not made known to Auran any particular purpose for which the
Manual contained in this site is required; and

(b) they have not relied on Auran to provide the Manual as being suitable for any
such purpose.

TACTICS ENGINE

Page. 3

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Contents

Introduction .. 5
Tactical AI ... 5
Targeting System, Unit Behaviour System and Projectile Response 5
Who is informed? ... 5
Who responds? ... 5
Damage ... 5
Relationships to shooter and target ... 5
Tactical AI settings 5
What is the response? ... 6
What happens then? ... 6
Strategic AI ... 6
The Troop Allocation System ... 7
Overview of what the TAS does .. 7
What can the designer control? ... 8
Line-by-line .. 8
The Building and Unit Construction System... 9
Accounts ... 9
Account Elements.. 10
Item Name ... 10
Priority Level .. 10
Build Method and Build Amount ... 10
Construction Order .. 10
Replacing Destroyed Units/Buildings ... 11
What if I can’t build that? ... 11
The BUCS and AIPS ... 11
The Finite State Machine (FSM) .. 13
General notes 13
File Structure ... 14
SetAlliance .. 14
SetEnd... 14
SetFSM ... 15
DefineRegion ... 15
DefineSpecialForces ... 15
DefineEndCondTree .. 16
DefineAICondTree ... 16
DefineCondState ... 16
DefineCondition ... 17
Actions Within a State 17
TriggerSpecialForces .. 17
ReleaseSpecialForces ... 18
GiveSpecialForces .. 18
AdjustRegionPri ... 18
BonusCredits ... 18
SetaiPFile .. 18
SetMessageFile ... 18
TriggerMessage 18
SetAlliance .. 18
Criteria 19
CritOR ... 19
CritAND ... 19
CritNOT ... 19
CritMoreUnitsThanEnemy ... 19
CritLessUnitsThanEnemy .. 19
CritTimer .. 19
CritTimerGame 19
CritStealPlan.. 19
CritHoldRegion .. 20

TACTICS ENGINE

Page. 4

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

CritHarassRegion .. 20
CritBuildBuilding .. 20
CritBeginBuildBuilding ... 20
CritBuildUnit ... 21
CritMoveUnitsToRegion .. 21
CritDestroyBuilding .. 21
CritDestroyThing 21
CritDestroyUnit .. 21
CritCollectMineral .. 22
CritCollectWater .. 22
CritKillEnemyUnits ... 22
CritKillTeamUnits ... 22
CritDestroyEnemyBuildings ... 22
CritDestroyTeamBuildings ... 22
CritKillAll .. 22
CritKillAllAndAllies ... 22
CritDestroyBuildingType .. 23
CritKillUnitType .. 23
CritEnemyInRegion ... 23
CritInRegion .. 23
CritTeamInRegion ... 23
CritHaveCredits ... 23

TACTICS ENGINE

Page. 5

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Introduction
The Artificial Intelligence (AI) in Dark Reign is extremely configurable. The mission designers have
control over the strategic behaviour of the computer-controlled teams and the mission designers
and players have control over the behaviour of the individual units (computer controlled and human
controlled, respectively). This document is intended to explain the full scope of the AI behaviours
and to serve as a user’s guide for designing appropriate AI behaviours for missions.

The AI is separated into two major components: tactical and strategic. The tactical AI is responsible
for the behaviour of individual units. It determines whether a unit fights or flees, and whom a unit
targets when a fight begins. The strategic AI decides where a computer-controlled team sends it
troops, as well as what troops and buildings it builds. The tactical AI information is relevant for both
the human and the computer controlled teams, and the strategic AI information is relevant only to
the computer controlled teams.

An integral part of the AI is the FSM – the Finite State Machine. This is the mechanism used to set
conditions which may either end the game or trigger some definable action.

Tactical AI
Units in both the computer teams’ armies and the human teams’ armies use the tactical AI system.
The two major components of this system are the targeting system and the unit behaviour system.
The targeting system decides at whom a unit should shoot. The unit behaviour system is used to
determine when a unit should enter combat, seek repair or healing, or ignore an immediate threat
in order to satisfy a higher level strategic purpose.

Targeting System, Unit Behaviour System and Projectile Response
Who is informed?
At present, all units within a specified radius of a projectile’s impact will have an opportunity to
react; of course, the unit that is hit directly by the projectile is also informed and has an opportunity
to respond. The radius chosen is dependent upon several factors, but it will always encompass
ALL units that are damaged by the projectile (within the projectile’s area of effect). In general the
radius is the maximum of the following: the projectile’s area of effect and a radius specified by the
designers for the type of target that the projectile hit. Currently there are two different defined radii,
one for units/ground and one for buildings.

Who responds?
Of the units that are informed of the explosion, not all of them will respond to the projectile. The
various factors are described below. In general, a unit will not respond. In order for a unit to respond,
it must meet at least one criterion that says “will respond” but no criteria that say “won’t respond”. In
other words, if a unit qualifies for response for one reason but not another, it won’t respond.

Damage
Units that take damage from the projectile will respond.

Relationships to shooter and target
Units allied to the target unit’s team (notice that this includes the target team itself) will respond if
they have a weapon that can damage the shooter, which must be an enemy to that team.

To restate:If the unit is an ally of the target and an enemy of the shooter and can hurt the shooter
then it will respond.

Tactical AI settings
There is a separate flowchart for the tactical AI. “Ignore” means that the unit won’t respond and
“Respond” means that the unit will respond.

TACTICS ENGINE

Page. 6

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Tactical AI Projectile Response Flowchart

Unmoving

Ignore

Low
Independence

Attacking

Existing
Orders

Target is
Unit

Target is
Dangerous
Building

Non-Agressive
Response

Ignore

Respond

N

Y

Y

Y

Y

N

N

N

Y

Y

Y

Y

N

N

N

N

Medium
Independence

What is the response?
The actual response of the unit is dependent upon several factors as well. A responding unit that
can attack the shooter will run towards the shooter a distance equal to the radius of response that
notified that unit. In other words, if the projectile hit a unit, the responding units within the defined
unit response radius from the target will run a distance equal to the unit response radius. If the
projectile hit a building, the responding units within the defined building response radius from the
target will run a distance equal to the building response radius.

A responding unit that cannot attack the shooter will run a distance as far as it can see directly
away from the shooter.

In both of these cases, if the unit (for any reason) cannot reach the target destination, it will move to
a random location within the radius of its seeing range.

What happens then?
First of all, if a unit was doing anything in terms of an order (moving, attacking, etc.) and decided to
respond to the projectile, it will return to what it was doing after responding. If the unit was doing
nothing, and its pursuit range is less than high, it will return to its initial location after responding.

Strategic AI
Dark Reign’s strategic AI can be divided into three major components: a troop allocation system
(TAS), a building and unit construction system (BUCS), and a finite state machine (FSM). The
principle concepts behind the Strategic AI system are that in a game as configurable as Dark
Reign, the computer had better be able to play a decent game in any situation and that a serious
mission designer should be able to customize the AI for a particular mission so that the gameplay
is more exciting.

The troop allocation system and the building and unit construction system primarily address the
first principle, that the computer should play a decent game in any situation. There are two goals: 1)
a designer should be able to generate a map and populate it with units and be able to play a game
right out of the blocks in order to streamline the initial design process, and 2) the computer should

TACTICS ENGINE

Page. 7

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

be able to react to the current game situation and not depend on pre-scripted events so that the
gameplay is more dynamic. The TAS periodically evaluates the state of the game, defines and
ranks certain strategic goals, and allocates the appropriate troops to those tasks. In tandem, the
BUCS can be used to have the computer build a base for the computer team and to supply the TAS
with troops for allocation.

The Finite State Machine is a system that allows the designers to set a variety of triggers in the
game that will allow in-game modification of the TAS and BUCS. Additionally, the FSM lets the
designers set specific troops aside for special events in the game. With the FSM, the designers can
have the strategic behaviour of a computer team change in the appropriate circumstances.

The Troop Allocation System
The Troop Allocation System matches a team’s forces with that team’s strategic goals. This can be
a fairly CPU intensive activity, so it is broken down over a number of game cycles. Furthermore, it
is only initiated periodically (roughly every 5-30 seconds depending on how the designer sets it up).

Overview of what the TAS does
The first step in Troop Allocation is to evaluate the playing field. This is done by dividing the entire
map with a coarse grid, and evaluating each grid cell as a strategic goal. For a medium sized map,
this could be a 10 by 10 grid or more. Some cells have no strategic value, and are dropped from
consideration in this strategic planning cycle.

The next step is to group our forces into squads. Pre-existing squads are usually left alone, and
units that have not yet been assigned a squad are grouped with other units in the same gridcell.
At this point, the matching phase begins. Each usable squad of units is compared against any likely
strategic goal. Every squad-goal pair is called a “matching”. Each matching is assigned a numeric
value according to a designer-defined matching function. For goals in regions that the AI team
knows about (can see or has seen), the matching function is just a linear combination of the estimated
enemy threat in that region, the distance from the squad to the goal, the number of enemy buildings
in that goal region, the number of our buildings in that goal region, a scripted value assigned to that
goal by the designers, and whether the squad was previously assigned to that goal (persistence
priority):

Formula 1:

matching_value = team’s threat priority X cell’s threat value
• team’s distance priority X distance from squad to cell
• team’s defend buildings_priority X number of our buildings in cell
• team’s attack enemy base priority X num of enemy buildings in cell
• team’s scripted priority X scripted_value
• team’s persistence priority (if this is the same goal as last time!)

If the goal region is unexplored, the matching value is a linear combination of the distance from the
squad to the goal region, a priority value for searching unexplored regions, the scripted value for
the region, and the persistence priority:

Formula 2:

matching_value = team’s distance priority X distance from squad to cell
• team’s scripted priority X scripted_value
• team’s exploration priority;
• team’s persistence priority (if this is the same goal as last time!)

Once a matching is created for each possible squad-goal pair, the computer finds the best matchings
(highest matching values). It then allocates troops from the squads to the goals of the best matches
until the most important current goals have enough troops committed to them to fulfill their
requirements. If the system cannot allocate enough troops to fulfill a goal’s minimum troop
requirements, it will not allocate any troops to that goal.

At the end of a matching cycle, the TAS should have a large number of goals fulfilled. There may be
units from multiple squads attached to a particular goal, so the old squads are eliminated and new
squads are formed out of all the units allocated to a single goal. The TAS then sends each revised
squad on its way to the goal to which it’s matched.

TACTICS ENGINE

Page. 8

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

What can the designer control?
Through the AIP files (files with extensions .aiP), the designer has control over enough parameters
of the TAS to create exquisitely balanced AI play or truly psychotic behaviour. Each computer-
controlled team has a current AIP that defines how the TAS and BUCS work. The FSM is responsible
for switching AIPs at the appropriate times.

The beginning of a sample AIP file might look like this:
//***
//Default.aiP
// ***

#include �aiPdef.h�
// How often do we recompute the strategy?
int recompute_strategy_period = 100;

// PRIORITIES
int threat_priority = 150;
int distance_priority = -3;
int defend_buildings_priority = 30;
int attack_enemy_base_priority = 75;
int persistence_priority = 30;
int exploration_priority = 50;
int scripted_priority = 50;

// TROOP COMMITMENT STUFF
double max_matching_force_ratio = 3.0;
double min_matching_force_ratio = 1.0;
double max_building_defense_force_ratio = 2.0;
double min_building_defense_force_ratio = 1.0;

// RELAXATION STUFF
int relaxation_cycles = 1;
float relaxation_coefficient = 1.0;

The first few lines are just comments. In fact, the AIP files use the same commenting conventions
as the programming languages C & C++. Any text following the characters “//” on a line is ignored.
Additionally, any text between the characters “/*” and the characters “*/” is also ignored. Thus you
can put anything you want in a comment, and it will not affect the behaviour of the AIP, or its ability
to be loaded properly by the Dark Reign game.

Any variable which is preceded by “int” is an integer variable (no decimal points). Any variable
preceded by “float” or “double” is a rational number (decimal points are allowed). The difference
between float and double is something related to how the computer stores information, and all a
designer has to do is use whichever one is specified.

Line-by-line
Here are what each line controls:
// How often do we recompute the strategy?
int recompute_strategy_period = 100;

A planning phase can take several hundred game cycles to finish. Once it’s done we wait some
number of game cycles before we start again. The value assigned to “recompute_strategy_period”
is the number of cycles that team will wait until starting the next cycle.
// PRIORITIES
int threat_priority = 150;
int distance_priority = -3;
int defend_buildings_priority = 30;
int attack_enemy_base_priority = 75;
int persistence_priority = 30;
int exploration_priority = 50;
int scripted_priority = 50;

The “PRIORITIES” section of the AIP file contains the coefficients used in computing the matching
values in Formulas 1 & 2.

TACTICS ENGINE

Page. 9

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

// TROOP COMMITMENT STUFF
double max_matching_force_ratio = 3.0;
double min_matching_force_ratio = 1.0;

For every viable strategic goal, the computer must compute how much troop strength is needed to
accomplish that goal. In the simplest case, the goal is simply an attack on a concentration of enemy
strength. The computer has a formula for computing the strength of any unit on the board (a
combination of many things including firepower, firerate, & hitpoints). The min_matching_force_ratio
and max_matching_force_ratio say how much strength we must commit to a goal in order to continue
to pursue it (min) and how much strength we’ll consider more than enough (max). The point of this
is to make sure we commit enough troops to a goal in order to stand a reasonable chance of
accomplishing the goal, while not overcommitting troops to the neglect of other goals.

As an example, assume that all units had a strength value of 1. If a given goal has 10 enemy units
in it, our min and max matching force ratios would mean that we wouldn’t send any troops to that
goal if we couldn’t muster up at least 10. Also, we wouldn’t send more than 30 because that would
be wasteful overkill.
double max_building_defense_force_ratio = 2.0;
double min_building_defense_force_ratio = 1.0;

Currently, these two values don’t mean exactly what they say. What they are used for is to allocate
extra troops to goals where there are buildings (ours or the enemy’s). If there’s one building in a
goal’s region, we’ll add at least one unit of average strength to that goal and no more than two. If
there were two buildings, it would be two and four, respectively.

// RELAXATION STUFF
int relaxation_cycles = 1;
float relaxation_coefficient = 1.0;

The current scheme for calculating the threat value of a region is to add up the strength of enemy
units in that region. If that were all, however, a region with one or no units would look to be pretty
weak even though the next region over might have a hundred enemy units in it. Thus, we perform
a “relaxation” of the borders of regions to let the threat value of a region bleed over into its neighboring
regions. “relaxation_cycles” says how far from any region to allow the bleed to go (1 means just to
the neighbor). The relaxation coefficient says how much of the threat to let bleed over.

Details: A coefficient value of 1.0 means that we should add the whole threat value of a region to its
neighbours. A value of 0.5 for the coefficient and two cycles would mean that we perform two
cycles in which we add half of each region’s values to each of its neighbours. If there was one
region with a threat of 100 (an entirely arbitrary number), after the first cycle, the regions immediately
next to it would have a threat value of 50, and the one region would still have a threat value of 100.
After the second relaxation cycle, regions two away from the original region would have threat
values of 25, while the one step away regions would have threat values of 100 (we add another
50!), and the main region would have a threat value of 200 (if it had four neighbours, each of which
had a value of 50 after the first cycle). The threat values are then scaled down so that the original
value is 100 (representing real troop strength again), the 1-neighbours have 50, and the 2-neighbours
have 12.5.

The Building and Unit Construction System
The TAS and the first part of the AIP files let the designers direct the personality of the AI team in
how it commits its available forces to battle. The next part of the AIP files, though, lets the designers
specify what forces are available in the game. The starting forces, of course, are set up in the map
editor, but the Building and Unit Construction System (BUCS) enables the designer to tell a team
what buildings and forces to make in the course of a game.

Accounts
The principle conceit in the BUCS is the “Account”. Each account represents a linear construction
program: “Build some of these, then when that’s done some of these, then when that’s done some
of these others, etc.”. Most importantly, though, there can be multiple accounts. Each account has
a linear construction program, each has some money in the bank, and each gets some portion of
the incoming money at any given time. Multiple accounts with their own money allow the designers
to guarantee that the money gets spread appropriately between a number of different needs.

TACTICS ENGINE

Page. 10

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Account Elements
The most basic component of an account is the Account Element, or element. Each element consists
of an item name of a building or unit type to build, a priority level for building it, a method for building
it, and an amount to build.

Item Name
The item name is the name of the item as it appears in units.txt (formerly parts.txt). The item can be
a building type or a unit type.

Priority Level
The priority level of an Account Element is just an integer. The higher the priority the sooner that will
get built by an account. The numbers don’t correspond to anything in the game in particular, but the
priority levels still mean something between two accounts for the same team.

To explain: Each account will only be building things from one priority level at a time. It will not move
on to anything at a lower priority level unless everything at a higher level has been finished. However,
different accounts can be at different priority levels at the same time. This only becomes important
when two accounts both need to use the same facility to produce an item (a building to make a unit,
or a construction crew to make a building). When there is such a conflict, the priority levels are used
to decide which account gets the facility. It’s handled as follows: if one account is building at priority
level n, and another is at level m, then n times out of (n+m) conflicts, the first account will get the
facility in question, and the other m times the other account will get the facility. Example: account
“Defense” is at priority 3, and account “Offense” is at priority 6. Both need to build things out of a
unit training ground. “Defense” get to build something 3/9s, or 1/3, of the time, and “Offense” will get
to start its construction the other 2/3s of the time.

Build Method and Build Amount
There are four available build methods: NUMBER_TO_HAVE, NUMBER_TO_BUILD,
RATIO_TO_BUILD, and RATIO_TO_HAVE. The “NUMBER” methods can be used at any priority
level for an account, and terminate after a certain finite number of units have been built. The “RATIO”
methods keep turning out units forever (or until the account runs out of money!); this precludes
them from being used anywhere other than at the lowest priority level for an account. NOTE: All
elements at the same priority level for an account must use the same Build Method!!!!

NUMBER_TO_HAVE means we keep building this element until there are “Build Amount” number
of that item on the map for our team. Thus if we have NUMBER_TO_HAVE of seven tanks, and we
already have three tanks on the map, we’ll build four more.

NUMBER_TO_BUILD means that we just build “Build Amount” number of that item. If we specified
NUMBER_TO_BUILD seven tanks, and we had three tanks on the map already, we’d end up with
10 (assuming the enemy destroyed none in the intervening construction time).

RATIO_TO_BUILD means that we just keep cranking out all of the units at this priority level in the
specified ratios until the account money is exhausted (which doesn’t have to happen if the AI team
gathers resources quickly enough!).

RATIO_TO_HAVE is slightly more complicated in that it looks at the map and sees how many of
each unit of the specified units (at that priority level) the AI team already has. It then makes enough
of each element to make the ratios correct. Then it defaults to RATIO_TO_BUILD to keep turning
out units in the right ratio. For example, if we specify one medic per five infantry using
RATIO_TO_HAVE, and we already have 10 infantry, but no medics, we’ll end up building two
medics immediately, and then we’ll crank out medics and infantry at the rate of one medic per five
infantry.

Construction Order
The way the BUCS works is this: at any point in time, each account tries to fulfill the highest priority
fulfilled element in its construction program. If there are several elements with the same priority, the
account tries to build all of the elements at the same time. Only when each element of the same
priority has been fulfilled within an account will elements of lower priorities be considered.
Furthermore, since there are multiple accounts, each account is trying to build its most pressing
elements.

TACTICS ENGINE

Page. 11

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Replacing Destroyed Units/Buildings
If a building or a unit is destroyed in the course of a game (or used up in some other fashion, such
as construction crews), the current priority level of an account can be set back. That is, if we have
specified at a high priority level that we have a “NUMBER_TO_HAVE” of some unit or building, and
we ever don’t have that many, then we return to the that unsatisfied priority level for that account.
For example, if we specified that we must have two construction crews with a priority of 9 in one
account, and we build them and go on to a lower priority level to crank out infantry, but one of the
construction crews is destroyed, we’ll stop making infantry and replace that construction crew
immediately. Once the replacement is made, we return to the level we were at before. This can be
used effectively for making sure our base is maintained properly (always keep a headquarters,
etc.).

What if I can’t build that?
If the prerequisites have not been satisfied for some unit which an account is saying to build, guess
what? It won’t get built. Furthermore, we will not progress past that priority level, although we will
still make other things at the same priority level. It is up to the designers to make sure they don’t
specify things that cannot be built. Note that one account can specify the prerequisites for something
that is built by another account. This is not necessarily recommended, but it can be a way for one
account to save up money for some advanced unit while another account blows all of its money on
making the facility for that unit.

The BUCS and AIPS
The syntax for the BUCS part of the AIP files is even more important than for the TAS part. If
anything is incorrect (leaving out a semi-colon, adding an extra comma or other punctuation, mis-
spelling #END_DATA, et cetera), the whole program can fail to load. Remember that white space
and comments are irrelevant (fortunately).

The first part of the BUCS section of the AIP says how many accounts there are and names them:

///
// The UCP Data
// ����������
// This specifies what type of units to build.
UNIT_CONSTRUCTION_PROGRAM unit_construction_program[MAX_ACCOUNT_COUNT];
#DATA
// Which Account BUDGET
//�����������������-
 �Slush_fund�, UNLIMITED;
 �Base_building�, 50;
 �Offensive�, 50;

#END_DATA

The line that starts with “UNIT_CONSTRUCTION_PROGRAM” must always be the same . Don’t
mess with it. Ditto with the “#DATA” and “#END_DATA”.

What you can change is between the #DATA and #END_DATA. Each line consists of an account
name in quotes (no white space within the quotes, please!). The name must consist of all letters
and numbers and underscores, and must start with a letter. Valid names might be “Slush_fund”,
“Offense1”, “My_bologna_has_a_1st_name”, or “D232_1”. Invalid names would be “My bologna
has a first name”, “123_go”, or “my.account”.

The budget is some portion of the team’s money that the account gets. The budget numbers don’t
have to add up to 100 or anything like that (remember, computers are good at figuring out stuff like
that). One special budget amount is “UNLIMITED”. This should only be used for very special accounts
with only a few things in them, because these are accounts that are considered to have first dibs on
any money they need. In fact, you should only have one such account, and it should only contain a
few things that the team absolutely needs to have on the board, such as a headquarters, some
extra construction crews, some power plants, or something else like that. Don’t ever put “RATIO”
stuff in an “UNLIMITED” account, because then no other account will ever get any money.

TACTICS ENGINE

Page. 12

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Syntactically: There must always be a comma after the account name (which is enclosed in quotes),
and a semi-colon after the budget amount.

// Build type can be NUMBER_TO_HAVE, NUMBER_TO_BUILD, RATIO_TO_BUILD, or RATIO_TO_HAVE

///
// Slush_fund
// ����������
// This specifies the baseline super-critical account
ACCOUNT_ELEMENT Slush_fund[MAX_ACCOUNT_ELEMENTS];
#DATA
// priority item name build method build amount
//�������������������������������������

9, �fh�, NUMBER_TO_HAVE, 1;
9, �FGConstructionCrew�, NUMBER_TO_HAVE, 3;
8, fgpp�, NUMBER_TO_HAVE, 1;

#END_DATA

///
// BASE_BUILDING
// ����������
// How do we want to go about building our base?
int Base_building_count = 3; // How many items are in the Base account

ACCOUNT_ELEMENT Base_building[Base_building_count];
#DATA
// priority item_name build_type build_amount
//�������������������������������������

8, �fglp�, NUMBER_TO_HAVE, 1;
8, �fgmn�, NUMBER_TO_HAVE, 1;
8, �fgww�, NUMBER_TO_HAVE, 5;

#END_DATA

///
// OFFENSIVE
// ����������
// What sort of offensive units and support structures do we want
int Offensive_count = 6; // How many items are in the Offensive account
ACCOUNT_ELEMENT Offensive[Offensive_count];
#DATA
// priority item_name build_type build_amount
//�������������������������������������

6, �fu�, NUMBER_TO_HAVE, 1;
6, �fc�, NUMBER_TO_HAVE, 1;

5, �SpiderBike�, RATIO_TO_BUILD, 1;
5, �HWFreedomFighter�, RATIO_TO_BUILD, 1;
5, �FreedomFighter�, RATIO_TO_BUILD, 2;
5, �TankHunter�, RATIO_TO_BUILD, 1;

#END_DATA

TACTICS ENGINE

Page. 13

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

The Finite State Machine (FSM)
The FSM is the highest level of AI for a computer-controlled team. To simplify, the Tactical AI
determines the behaviour of individual units, the AIPs determine the current personality and priorities
of an AI team, and the FSM switches AIPs to match the current strategic situation. Each computer-
controlled team has an FSM for determining its behaviour. Additionally, each team in a game (even
each human team) has an Endcondition Tree, which is just an FSM that can cause that team to win
the game if a certain state is reached.

The FSM actually does more than just switch AIPs. The FSM consists of any number of “States”.
Each State contains actions that occur when that state is entered and criteria for switching to other
states. One of the actions is switching AIPs; others may involve sending particular units to certain
places or changing some priorities on the map. Criteria for switching state are often called triggers.
These are checks that are made by the AI to see if particular events have occurred or if particular
conditions have arisen (time passing, enemy troops reaching large numbers, etc.).

Thus, a simple FSM could have three states: a construction-oriented state, and offensive state,
and a defensive state. When the game starts, the AI team might start in the construction-oriented
state that would load an FSM with a rich BUCS. Once a specified amount of time has passed, it
could switch to an offensive AIP. If it’s getting trounced on the field, it could switch to a defensive
AIP and so on...

More complex FSMs can have some knowledge of the map in question. They could know that if
units from a particular team reach a certain region they have to send troops there right away. Or a
designer could give team very few credits to start with, but if they accomplish some task (destroying
a critical building on the enemy team), they could get extra cash as a reward.

There are no practical differences between Endcondition Trees and FSMs, except that when an
Endcondition Tree changes state to state 0, the team that has that Endcondition Tree wins the
game. Also, some FSM actions are not relevant for human teams, and cannot be used in Endcondition
Trees.

General notes
The first thing to know is that designing an FSM is computer programming. As such it is inherently
NOT EASY. There are many ways to create bad FSMs, and getting the proper behaviour out of a
complicated FSM is both an art and a science.

FSMs consist mostly of states , and states consist of actions and criteria . Actions are things that
happen when a state is entered, and criteria are conditions that have to be met to cause a change
of state. As with any computer programming conceit, actions and criteria have names and can
accept parameters. The names tell the computer what kind of thing to do, and the parameters
specify the exact details. For an everyday example, the name of an action could be “WashACar”
and a parameter could be “MyPorsche”. Additionally, as with any computer programming, there is
an appropriate syntax for expressing each action or criteria. The syntax is how you say (or write
out) an action or criteria; it includes the grammar and punctuation. So, an action for car washing
might need its parameter (which car) expressed in parentheses as follows:

WashACar(MyPorsche)
In the Dark Reign FSMs, there are two parameter types, number and name.
• Numbers are always integers (whole number). Parameters are not allowed to be negative at

the moment.
• Names are names of things. For example, the SetAipFile function takes the name of a file.
In the syntax descriptions, we use the following additional notation
• … means you can specify this parameter as many times as required. For example,

DefineSpecialForces unit_id … means many unit ids can be specified in the list of unit ids.
Note that each parameter is separated by a space.

• … also appears after ‘actions’ in a conditional state. This means this action can be performed
multiple times by specifying the command again with different parameters
(e.g. TriggerSpecialForces, multiple Special Forces groups can be triggered on entry to a
 conditional state.).

• Note that when a building_id or unit_id is required, this means that the building or unit must

TACTICS ENGINE

Page. 14

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

be on the map at the beginning of the game (ie. created by the scenario editor). The ids can
be found in the scenario file (.scn) for a scenario.

• The AI Conditional Tree is specified in a separate .FSM file. Three separate FSMs can be
specified for each team; in future versions of the engine these will specify AIs tuned to
difficulty levels in order from left to right: easy, medium and hard. These FSM files in turn can
specify different AIP files, criteria, and actions.

• The SetFSM, SetAIPFile and #include commands (with an AIP file only) all search the current
scenario directory first for a matching file, and then they search the \AIP directory. This
allowscommon files to be shared.

• Comments: Any text on a line after a semi-colon is ignored (treated as just a comment for the
designer to use to remember what’s going on).

Scenario File Definitions

File Structure
Basic Structure of the .scn file

�scenario stuff� // includes terrain set, scenario version �team stuff�
�team stuff� // settings for each team � credits, end condition / FSM.
�scenario stuff� // includes buildings, units and credits at start of game, and team
�regions� // rectangular regions used by FSM
�special forces groups� // groups of sf soldiers that are commanded by FSM

The following are actions that can occur in the scenario files (and one can occur in the FSMs, too).

SetAlliance
SetAlliance (number t0 number t1 number t2 number t3 number t4 number t5 number t6 number t7)
This must appear in a SetTeam construct. There is also an ‘action’ version of this command that
can be used as an action in an FSM. It specifies how this team sees the other seven teams (as an
ally, neutral or enemy). The parameter list specifies a number for each team (including this team),
which represents this teams view of the particular team. Note that the other team may have a
different view of this team. The alliance state in the parameter list for this team should always be
allied (it does not make sense for a team to be an enemy of itself.) Note that if this statement is not
specified for a team, then it is assumed that this team thinks of all other teams as enemies t0..t7 are
0 – enemy, 1 – neutral, 2 – ally

Example:
SetAlliance(2 0 0 0 1 2 0 0)

This says that the team who calls this considers teams 0 and 5 to be allies, team 4 to be neutral,
and all the rest it sees as enemies. As you can see, when the definition of an action or criteria
specifies “number t1”, the “number” just says what sort of parameter to use, and the “t1” is just a
convenient name so that you can remember what is supposed to go where. When you use the
action, just put in a number.

SetEnd
SetEnd (name endcondition_filename)
This must appear in a SetTeam construct. This specifies the endcondition file to use for the particular
team. An endcondition file specifies the actions a team must perform to win the game. If this is not
specified, then the teams endcondition defaults to allied victory. It applies to the team which issues
the command in the set team command.

Example:
SetTeam(0) ; team number 0
{
SetTeamSide(1) ; is imperium (0=FreedomGuard, 1=Imperium, 2=civilian ?)
SetCredit(20000) ; and starts with this many credits
SetEnd (defend.end) ; and reads the �defend.end� file to get its win conditions
}

TACTICS ENGINE

Page. 15

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

SetFSM
SetFSM (name FSM_1 name FSM_2 name FSM_3)
This must appear in a SetTeam construct. This specifies three FSM files which can be used by this
team - in order - easy, medium and hard. It applies to the team which issues the command in the
set team command.

Example:
SetTeam(0) ; team number 0
{
SetTeamSide(1) ; is imperium (0=FreedomGuard, 1=Imperium, 2=civilian ?)
SetCredit(20000) ; and starts with this many credits
SetFSM (easy.FSM medium.FSM hard.FSM) ; and has this choice of FSM�s
}

If a team does not set an FSM, it will attempt to load a default FSM. The default FSM name is
constructed as follows - ‘def_tt_v.FSM’ – where tt is a two digit team type and v is the FSM variation
number (difficulty). First the scenario directory is searched, then the \AIP directory (where global
default FSMs are to be stored.) For example – Def_02_1.FSM is a civilian – medium difficulty FSM.
eg. Default0.FSM is the name for a default FSM for Imperium teams and default1.FSM is the name
of default FSM’s for freedom guard teams. Note that there must be a default FSM for every team
type (including Civilian), that is used in a scenario. To be on the safe side, specify a default FSM for
team types 0..4 and have a single state which does nothing in those types that you don’t wish to
develop further.

DefineRegion
DefineRegion (number region_id r number x1 number y1 number x2 number y2)
DefineRegion (number region_id c number x number y number radius)
This defines a rectangular or circular region of ground. The units of this command are pixels, 0 0 is
the top left-hand corner of the map. Each map tile is 24 pixels wide and high, so to convert a tile x
or y position to a pixel x or y position, multiply it by 24. Regions are used to trigger special forces,
specify areas of the map to harass, hold etc.

Example:
DefineRegion(1001 r 0 0 24 72)
This defines a rectangular region in the upper-left hand corner of the map which is one tile wide by
three tiles tall and assigns it the ID number of 1001.
NOTE THAT CIRCULAR AREAS CANNOT BE USED FOR AI OR SPECIAL FORCES PURPOSES.

DefineSpecialForces
DefineSpecialForces (number special_forces_id number team)
{
number unit_id ...
}

This construct defines a group of units into a crack squad of special forces. This prevents the AI
system from taking control of these units. Instead, their behaviour is defined by the FSM commands
TriggerSpecialForces and ReleaseSpecialForces.

The command takes a unique id and a team number. This id is the same one to be used in the other
special forces commands that act on this group of special forces. Note also that the id must be
unique in the file - no building, overlay (tree etc.), unit or anything may have this id.

Example:
DefineSpecialForces(2001 44 46 47 51)

In this example, a group of special forces containing units 44, 46, 47, and 51 is created and assigned
the group ID 2001.
See also: TriggerSpecialForces, ReleaseSpecialForces.

In .FSM and .end files
This section contans everything that can be put in and FSM or endcondition file.

TACTICS ENGINE

Page. 16

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

DefineEndCondTree
DefineEndCondTree (number time_limit)
{
DefineCondState ...
}

This must be the first keyword in an ‘.end’ file. The End Condition files must all reside in the scenario
directory. The team that this tree applies to is the team that loaded this end condition tree from the
scenario file.

There are two FSM’s which can be specified for each team, the End Condition Tree and the AI
Condition Tree. There can be multiple conditional states in each tree.

Define an end game (win) Condition Tree. If an End Condition is not specified for a team, it defaults
to kill all units and buildings of non allied teams.

The conditional states are numbered in the order they are listed. The first one is state 1, the second
one is state 2 and so on. Note that conditional state 0 is the win state, a transition to this state
causes the team to win (and therefore all other teams not winning at this time to lose).

There is no lose condition. To lose the game, another team, or teams, must win the game. This
means that if you have had all units and buildings destroyed, and another team donates you a
construction crew or fleet of tanks, you can continue in the game.

Team is the team number that this end Conditional Tree applies to. Only one End Conditional tree
may exist per team.

The time_limit is the total time (in game cycles) allotted to complete this Conditional Tree. The
bonus times specified in some conditions / actions can add to this allotted time. If time limit is 0, it
has no effect. If this time limit runs out, then this team cannot EVER win the game)
See also: DefineCondState, DefineAICondTree

DefineAICondTree
DefineAICondTree ()
{
DefineCondState ...
}

There are two FSM’s which can be specified for each team, the end condition tree and the AI
Condition Tree. There can be multiple conditional states in each tree. The conditional states are
numbered in the order they are listed. The first one is state 1, the second one is state 2 and so on.

This must be the first keyword in an FSM file. An FSM file is the only place this keyword can appear.
The team this FSM applies to is the team which loaded the FSM using the SetFSM keyword. An
FSM can be used by multiple teams simultaneously. (Separate instances of the same file are
loaded.)

Define an AI behaviour tree.

See also: DefineCondState, DefineEndCondTree

DefineCondState
DefineCondState ()
{
ReleaseSpecialForces ...
TriggerSpecialForces ...
GiveSpecialForces �
AdjustRegionPri ...
SetaiPFile
SetMessageFile

TACTICS ENGINE

Page. 17

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

DefineCondition ...
TriggerEvent ...
SetAlliance
TriggerMessage�
}

This defines a conditional state. A Conditional Tree may have many conditional states. The conditional
states are numbered in the order they are listed. The first one is state 1, the second one is state 2
and so on. Note that in the End Condition Tree, conditional state 0 is the win state, a transition to
this state causes that team to win.

The states are linked to each other, in that DefineCondition specifies the condition that must be met
in order to go to the next state. There may be many conditions in each condition state each connecting
to a different state.

Note that if the DefineCondition command is not specified, then the state will never exit. This will
prevent this end / AI Condition Tree from ever winning the game, or executing any more statements.
This is useful only when there is nothing more to achieve in this tree, and this tree doesn’t want to
cause the game to be won.

DefineCondition
DefineCondition
(
number next_state number time_limit number bonus_time
number score name debug_message
)
{
criteria single_criteria
}

Define a transition condition - this specifies what requirements need to be met to get to another
state.
• next_state is the state to jump to when the criteria is satisfied.
• time_limit is the time the team has to complete this condition.
• bonus_time adds to the total time the team has to complete an end conditional tree (to win

the game) This ensures that if a complicated state is reached, more time can be given to the
player to complete it. For an AI conditional tree, this must always be 0.

• score is currently not implemented, but if it were it would be the number to add to the teams
score on completion of the state.

• Debug_message is a message that is printed on the game screen when this state transition
occurs. It also prints the team number, current state, next state and if AI or end condition.
NOTE THERE CANNOT BE ANY SPACES IN THIS MESSAGE, and it MUST start and end
with a quote. For example: “Yes_Killed_Them”

There can only be one criteria listed, however it may be the AND or OR ciriteria, which can have
two criteria as its input. This structure may recurse any number of levels deep.

The DefineCondition construct can be specified more than once in a conditional state if there are
two different states that can be reached when different conditions are met. For example, state 2
may be the ‘AI team has approx the same number of units as the enemy’ state and may jump to
state 1 when the condition ‘team has less than 50 % of units of enemy’ is met, or jump to state 3
when the condition ‘team has more than 150 % of units of enemy’ is met.

Actions Within a State
These are actions that are carried out when the conditional state is entered. If the state is entered
more than once, then the action will be issued every time the state is entered.

TriggerSpecialForces
TriggerSpecialForces (number special_forces_id number region_id)
Triggers a special forces group to go to the region specified. The region must be specified as a
rectangular region, not a circular one. The units in the special forces group will be distributed
randomly in the rectangular area. If all units are wanted to be in a single tile, then the area should be
specified as one tile wide in the define region construct. Note however that only one unit can ever
occupy a tile at a time.

TACTICS ENGINE

Page. 18

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

This command will override any previous orders issued to this group of special forces - if two states
were changed quickly, and the first one ordered the special forces to a particular region, and the
next state orders the group to another, it is conceivable that the special forces will never arrive at
the first specified region.

ReleaseSpecialForces
ReleaseSpecialForces (number special_forces_id)
Control of the special forces is handed from the FSM to the AI system. When the special forces
have finished their assignment, they can be handed to the AI system to use, instead of continuing
to guard or harass the same region.

GiveSpecialForces
GiveSpecialForces (number special_forces_id number team)
Give units to the team specified team. The units must pre-exist on the map. If any of the units are
destroyed before the give units command is executed, those destroyed units will not be given. The
units do not have to be from the team that is executing the give command, they can be from any
team.

AdjustRegionPri
AdjustRegionPri (number region_id number priority number min_forces number max_forces)
This adjusts the scripted value in the AI scheduler of all grid cells within a particular region to be the
new priority value. Additionally, it must specify the minimum and maximum unit strength points
needed to satisfy the goal. This currently only works with rectangular regions, circular regions
cannot be used.

BonusCredits
BonuesCredits (number team_id number free_money)
This can be used to give the specified team extra money for free. It could be a reward for achieving
a goal, or whatever you want. The credits given do not come from the team that possesses the
FSM; they come from nowhere.

SetAIPFile
SetaiPFile (name filename)
Define an AIP file to switch into, for this state. The AIP file currently must be in the scenario directory,
however this will probably change to first search the scenario directory and then search the \AIP
directory. AIP’s are documented separately.

SetMessageFile
SetMessageFile (name filename)
Define a message file to display on the screen of this player upon entering this state. It currently
displays just the filename.

This command is only valid in End Conditional Trees, it is meaningless in an AI Conditional Tree.

TriggerMessage
TriggerMessage (name multi_language_key)
Play a sound (.wav file) when a state is entered. The messages will be queued and played in the
order they are listed in the condition state. This can provide a taunt, or some training information.
The multi language key is used to index the multi language support text configuration file. This in
turn plays the correct wave file.

SetAlliance
SetAlliance (number t0 number t1 number t2 number t3 number t4 number t5 number t6 number t7)
There can also appear in a SetTeam construct in the scenario file (this is where the default alliances
should be set). It specifies how this team sees the other 7 teams (as an ally, neutral or enemy). The
parameter list specifies a number for each team (including this team), which represents this team’s
view of the particular team. Note that the other team may have a different view of this team. The
alliance state in the parameter list for this team should always be allied (it does not make sense for
a team to be an enemy of itself.) This set of alliances can only apply to the team that issued this
command from its FSM / end condition list. (It can never affect a different team.) t0..t7 are 0 –
enemy, 1 – neutral, 2 – ally.

TACTICS ENGINE

Page. 19

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

Criteria
This section describes the various criteria (conditions) which can be used to trigger changes between
states.

CritOR
CritOR()
{
criteria criteria_1
criteria criteria_2
}

The criteria is complete if either criteria_1 or criteria_2 is complete.
CritAND
CritAND()
{
criteria criteria_1
criteria criteria_2
}
The criteria is not complete until both criteria_1 and criteria_2 are complete.

CritNOT
CritNOT()
{
criteria criteria
}
This criterion is completed if the nested criteria is incomplete or cannot be completed. If the nested
criteria are complete, this criterion will be marked incomplete.

CritMoreUnitsThanEnemy
CritMoreUnitsThanEnemy (number percentage)
The number of enemy units is defined as being the number of units of the enemy team with the
largest number of units, NOT the total number of enemy units. This is always true if there are no
enemy teams. Neutral and allied teams are not considered in this calculation. This is true when we
have ((team_strength * 100) > (max_enemy_strength * percentage))

CritLessUnitsThanEnemy
CritLessUnitsThanEnemy (number percentage)
The number of enemy units is defined as being the number of units of the enemy team with the
largest number of units, NOT the total number of enemy units. This is always false (incomplete) if
there are no enemy teams. Neutral and allied teams are not considered in this calculation. This is
true when we have ((team_strength * 100) < (max_enemy_strength * percentage))

CritTimer
CritTimer (number game_cycles)
This criterion is complete when the number of game cycles has passed whilst in this condition
state. If the state is exited and re-entered, then the count begins again from 0.

CritTimerGame
CritTimerGame (number game_cycles)
This criterion is complete when the number of game cycles has passed since the beginning of the
game. Note that once this criterion is complete, it can never become incomplete, as the game cycle
number will have always passed.

CritStealPlan
CritStealPlan (number team name item_name)
Completed when the team ‘team’ steals the plan for the unit or building ‘item_name’. To steal the
plan, they must send a spy to the facility, spy on it, and walk back into their own headquarters. The
plan is not considered stolen until that time. This means that ‘team’ must be able to build the stolen
item before this condition is true. (They do not actually have to build the item however.) Note that
the team ‘team’ can steal the plan from any team they choose, not necessarily the one executing
this criterion.

TACTICS ENGINE

Page. 20

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

CritHoldRegion
CritHoldRegion (number region_id number limiter number flags)
The criterion is complete if a region is held by the team that is testing this criterion for a certain
amount of time. A region is held during a time period if at the end of the time period there are no
enemy units within it and there are allied units present within it. Note that neutral units have no
effect on the calculation. Note enemy buildings ARE allowed to remain in the region.

‘limiter’ is the number of time periods that the team is required to hold the region for. Currently, one
time period is 32 game cycles. (=> 10 is 320 game cycles. There are usually between 15 and 40
game cycles per second, depending upon the game speed selection and the machine speed.)
Note that the region does not have to be held continuously, just so long as it is held for ‘limiter’
number of time periods.

‘Flags’ is not used and should be 0 for future compatibility.

CritHarassRegion
CritHarassRegion (number region_id number limiter number flags)
The criteria is complete if this team does damage to a region for a certain amount of time.
Limiter is either the total hitpoints damage to be done to the region or the number of time periods
that harassment must be performed over. The damage / time limit is reset whenever harassment
ceases, unless the CF_ACCUMULATIVE flag is set.

Flags = 0 – the limiter is a number of time periods which the region must be harassed for. See
CritHoldRegion for a definition of how this time period is calculated. The harassment must be
continuous. In other words, there may be no time period where damage was not done within the
region, otherwise the time counter or damage counter is reset to the original value of limiter.

Flags = 2 (CF_DAMAGELIMITER) – the limiter is an amount of damage done to a region, not an
amount of time. The damage done is increased by the hitpoint value of a projectile when it explodes
in a region (on a building or unit within the region, or on the ground).

Flags = 1 (CF_ACCUMULATIVE) – the harassment need not be continuous. In other words, there
may be time periods where damage is not done within the region. Damage is accumulated.

Flags = 3 (CF_DAMAGELIMITER | CF_ACCUMULATIVE) – continuous harassment is not required,
the limiter value supplied is an amount of damage required, not a time value.

CritBuildBuilding
CritBuildBuilding (name building_type number region_id number amount)
The criteria is complete when the team has completed construction of the required number of
buildings of type ‘building_type’ within the region specified by region_id. Amount is the number of
buildings of the type that have to exist within the region at this point in time. It is not the number of
buildings this team has commenced building. (Buildings may have been destroyed.)

Note that only rectangular regions are supported, circular regions are not supported.

If the region_id is 0, then the region is considered to be the whole map.

Building_type is the symbol id of the building from the build.txt file (the same one as used in the
CritStealPlan criteria).

CritBeginBuildBuilding
CritBeginBuildBuilding (name building_type number region_id number amount)
The criteria is complete when the team has commenced or completed construction of the required
number of buildings of type ‘building_type’ within the region specified by region_id. Amount is the
number of buildings of the type that have to exist within the region at this point in time. It is not the
number of buildings this team has commenced building. (Buildings may have been destroyed.)

Note that only rectangular regions are supported, circular regions are not supported.

TACTICS ENGINE

Page. 21

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

If the region_id is 0, then the region is considered to be the whole map.

Building_type is the symbol id of the building from the build.txt file (the same one as used in the
CritStealPlan criteria).

CritBuildUnit
CritBuildUnit (name unit_type number amount)
The criteria is complete when the team builds a unit of type ‘unit_type’. Amount is the number of
units of the type that have to be built. Unit_type is the type symbol id of the unit from the unit.txt file.

CritMoveUnitsToRegion
CritMoveUnitsToRegion (number region_id number survivors)
{
number unit_id ...
}

This condition becomes true when at least ‘survivors’ number of units have been into the region
specified. They do not all have to be in the region at the same time. If enough units die such that
there can never be ‘survivors’ number of them in the region, then the condition can never be
completed.

In effect, this criteria means ‘At least survivors number of units from the list must have at some
point in the game been in the region’. The units may be from any team, or a combination of teams.
They do not necessarily have to be on this team.

Currently the units must be in the region and visible. They cannot be inside a transport, or inside a
building.

CritDestroyBuilding
CritDestroyBuilding ()
{
number building_id ...
}

This criterion is completed when all buildings in the list of buildings are no longer present. This
usually means the building is destroyed, but it could also mean the building is sold or otherwise
removed. Note that these buildings could be from any team (including the team that is checking the
condition). All buildings in this list must exist at the start of the game, when the map is loaded (i.e.
created with the map editor). There is no provision here to check for the destruction of buildings
that are built after the game begins.

CritDestroyThing
CritDestroyThing ()
{
number thing_id ...
}

Criteria completed when marked all ‘things’ in the list are destroyed. It is not defined what a thing is.
This criteria is currently not implemented, and always returns incomplete / false. It is intended to
detect destruction of an overlay (tree / rock etc.).

CritDestroyUnit
CritDestroyUnit ()
{
number unit_id ...
}

This is criteria is completed when all units in the list of units are destroyed. Note that these units
could be from any team (including the team that is checking the condition). All units in this list must
exist at the start of the game, when the map is loaded (i.e. created with the map editor). There is no
provision here to check for the destruction of units that are built after the game begins.

TACTICS ENGINE

Page. 22

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

CritCollectMineral
CritCollectMineral (number amount)
Completed when an amount of minerals are mined by the team since the beginning of the game.
The units are the same as given in the statistics screen at the end of the game. Note that this is the
amount actually mined by buildings from this team, not the amount used in this team’s power
stations.

CritCollectWater
CritCollectWater (number amount)
Completed when an amount of water is mined by the team since the beginning of the game. The
units are the same as given in the statistics screen at the end of the game. Note that this is the
amount actually mined by buildings from this team, not the amount sold by this team’s water launcher.

CritKillEnemyUnits
CritKillEnemyUnits (number percentage)
This criteria is completed when the total number of units all enemy teams have becomes equal to
or falls below (starting_number_of_enemy_units * percentage / 100). For example, if the enemy
teams started with 30 units, and the criteria was CritKillEnemyUnits (20) then the criteria will become
true when the enemy team has six or fewer units left. Even if the enemy teams have the original
starting units destroyed this criteria will remain false if enough new units were produced to keep the
unit count above the required threshold. Note that enemy teams are teams that this team is listed
as an enemy of on the comms menu. The units of allied and neutral teams are not counted in this
calculation at all.

CritKillTeamUnits
CritKillTeamUnits (number team number percentage)
This criteria is completed when the number of units the specified team has becomes equal to or
falls below (starting_number_of_teams_units * percentage / 100). For example, if team 2 started
with 30 units, and the criteria was CritKillTeamUnits (2 20) then the criteria will become true when
team 2 has six or fewer units left. Even if the specified team has all of its original starting units
destroyed, this criterion will remain false if enough new units were produced to keep the unit count
above the required threshold.

CritDestroyEnemyBuildings
CritDestroyEnemyBuildings (number percentage)
Completed when a percentage of enemy buildings are destroyed. This relates to the number of
buildings that the (current) enemy teams had when the scenario was loaded, even if they were not
enemies at that time. The percentage is the percentage to destroy, not the percentage allowed to
remain. Note that new buildings enemy teams build count as if to replace a destroyed building.

CritDestroyTeamBuildings
CritDestroyTeamBuildings (number percentage)
Completed when a set percentage of a team’s buildings are destroyed. This criteria is completed
when the number of buildings the specified team has becomes equal to or falls below
(starting_number_of_teams_buildings * percentage / 100). For example, if the team 2 started with
eight buildings, and the criteria was CritDestroyTeamBuildings (2 25) then the criteria will become
true when team 2 has two or fewer buildings left. Even if the specified team has all of its original
starting buildings destroyed, this criterion will remain false if enough new buildings were produced
to keep the number of buildings above the required threshold.

CritKillAll
CritKillAll ()
Completed when ALL NON-ALLY units/buildings are destroyed. This does not include resource-
producing facilities. Combat units do not automatically target enemy water wells and mineral mines,
as any team can mine resources from them.

CritKillAllAndAllies
CritKillAllAndAllies ()
Completed when ALL units/buildings are destroyed, even those belonging to your allies. This does
not include resource-producing facilities.

TACTICS ENGINE

Page. 23

AIP and Scenario End Conditions Guide
WWW

http://www.auran.com

Email
helpdesk@auran.com

Support
support@auran.com

CritDestroyBuildingType
CritDestroyBuildingType (name building_type number team)
Completed when a team has no buildings of a particular type remaining on the specified team. The
building type is the symbol id of the building (from the build.txt file).

CritKillUnitType
CritKillUnitType (name unit_type number team)
Completed when a team has no units of a particular type remaining on the specified team. The
building type is the symbol id of the unit (from the units.txt file).

CritEnemyInRegion
CritEnemyInRegion (number region_id)
This criterion is true if any enemy unit is currently in the region. It is false even if enemies were in
the region, and no longer are.

CritInRegion
CritInRegion (number region_id)
This criterion is true if any units from this team are currently in the region. It is false even if enemies
were in the region, and no longer are.

CritTeamInRegion
CritTeamInRegion (number region_id number team_id)
This criterion is true if any units from the specified team are currently in the region. It is false even
if enemies were in the region, and no longer are.

CritHaveCredits
CritHaveCredits (number credits)
This criterion is true when the team’s credits get to be greater or equal to the specified number of
credits.

	Contents
	Introduction
	Tactical AI
	Targeting System, Unit Behaviour System and Projectile Response
	Who is informed?
	Who responds?
	Damage
	Relationships to shooter and target
	Tactical AI settings
	What is the response?
	What happens then?
	Strategic AI
	The Troop Allocation System
	Overview of what the TAS does
	What can the designer control?
	Line-by-line
	The Building and Unit Construction System
	Accounts
	Account Elements
	Item Name
	Priority Level
	Build Method and Build Amount
	Construction Order
	Replacing Destroyed Units/Buildings
	What if I can't build that?
	The BUCS and AIPS
	The Finite State Machine (FSM)
	General notes
	File Structure
	SetAlliance
	SetEnd
	SetFSM
	DefineRegion
	DefineSpecialForces
	DefineEndCondTree
	DefineAICondTree
	DefineCondState
	DefineCondition
	Actions Within a State
	TriggerSpecialForces
	ReleaseSpecialForces
	GiveSpecialForces
	AdjustRegionPri
	BonusCredits
	SetaiPFile
	SetMessageFile
	TriggerMessage
	SetAlliance
	Criteria
	CritOR
	CritAND
	CritNOT
	CritMoreUnitsThanEnemy
	CritLessUnitsThanEnemy
	CritTimer
	CritTimerGame
	CritStealPlan
	CritHoldRegion
	CritHarassRegion
	CritBuildBuilding
	CritBeginBuildBuilding
	CritBuildUnit
	CritMoveUnitsToRegion
	CritDestroyBuilding
	CritDestroyThing
	CritDestroyUnit
	CritCollectMineral
	CritCollectWater
	CritKillEnemyUnits
	CritKillTeamUnits
	CritDestroyEnemyBuildings
	CritDestroyTeamBuildings
	CritKillAll
	CritKillAllAndAllies
	CritDestroyBuildingType
	CritKillUnitType
	CritEnemyInRegion
	CritInRegion
	CritTeamInRegion
	CritHaveCredits

