

Sound Operating System Reference

Development System

� DATE \@ "M/d/yy" * MERGEFORMAT �10/29/9610/28/96�

Sound Operating System
© Copyright 1993-19965, All Rights Reserved

Human Machine Interfaces, Inc.
30 East Broadway, Suite 180
Eugene, Oregon 97401

Tel: (50341) 687-6509 (Fax: (50341) 687-6479 (BBS: (50431) 687-5623 (
Home Page:www.humanmachine.comEMail hmi@efn.org
��Table Of Contents

Introduction	

	Forward										1 - � pageref forward * MERGEFORMAT �11�
	System Enhancements								1 - � pageref SystemFeatures * MERGEFORMAT �22�
	System Organization 								1 - � pageref systemorganization * MERGEFORMAT �33�
	Library naming conventions							1 - � pageref LibraryNaminigConventions * MERGEFORMAT �55�
	Differences between version 3.0 and version 4.0					1 - � pageref DifferencesBetween * MERGEFORMAT �66�

Quick Start / Tutorial - sosEZ

	Quick Start									2 - � pageref sosEZ * MERGEFORMAT �11�

	sosEZ Functions

	sosEZGetConfig									2 - � pageref sosEZGetConfig * MERGEFORMAT �22�
	sosEZInitSystem									2 - � pageref sosEZInitSystem * MERGEFORMAT �33�
	sosEZLoadSample								2 - � pageref sosEZLoadSample * MERGEFORMAT �54�
	sosEZLoadSong									2 - � pageref sosEZLoadSong * MERGEFORMAT �65�
	sosEZUnInitSystem								2 - � pageref sosEZUnInitSystem * MERGEFORMAT �76�

	sosEZ Code Example								2 - � pageref sosEZCodeExample * MERGEFORMAT �87�

Data Structure Reference

	_SOS_CAPABILITIES								3 - � pageref SOS_CAPABILITIES * MERGEFORMAT �22�
	_SOS_DIGI_DRIVER								3 - � pageref SOS_DIGI_DRIVER * MERGEFORMAT �66�	_SOS_HARDWARE								3 - � pageref SOS_HARDWARE * MERGEFORMAT �1313�
	_SOS_SAMPLE									3 - � pageref SOS_SAMPLE * MERGEFORMAT �1414�

	_SOS_MIDI_DRIVER								3 - � pageref SOS_MIDI_DRIVER * MERGEFORMAT �2222�
	_SOS_MIDI_SONG								3 - � pageref SOS_MIDI_SONG * MERGEFORMAT �2424�

S.O.S. Function Reference

	Summary of available functions							4 - � pageref FunctionReference * MERGEFORMAT �11�

	Digital Driver Functions
	
	sosDIGIDetectGetCaps								4 - � pageref sosDIGIDetectGetCaps * MERGEFORMAT �66�
	sosDIGIDetectGetSettings								4 - � pageref sosDIGIDetectGetSettings * MERGEFORMAT �77�	sosDIGIDetectFindFirst								4 - � pageref sosDIGIDetectFindFirst * MERGEFORMAT �88�
	sosDIGIDetectFindHardware							4 - � pageref sosDIGIDetectFindHardware * MERGEFORMAT �99�
	sosDIGIDetectFindNext								4 - � pageref sosDIGIDetectFindNext * MERGEFORMAT �1010�
	sosDIGIDetectInit								4 - � pageref sosDIGIDetectInit * MERGEFORMAT �1111�
	sosDIGIDetectUnInit								4 - � pageref sosDIGIDetectUnInit * MERGEFORMAT �1212�
	sosDIGIDetectVerifySettings							4 - � pageref sosDIGIDetectVerifySettings * MERGEFORMAT �1313�
	sosDIGIGetBytesProcessed							4 - � pageref sosDIGIGetBytesProcessed * MERGEFORMAT �1414�
	sosDIGIGetDMAPosition								4 - � pageref sosDIGIGetDMAPosition * MERGEFORMAT �1515�
	sosDIGIGetLoopCount								4 - � pageref sosDIGIGetLoopCount * MERGEFORMAT �1616�
 	sosDIGIGetPanLocation								4 - � pageref sosDIGIGetPanLocation * MERGEFORMAT �1717�
	sosDIGIGetPanSpeed								4 - � pageref sosDIGIGetPanSpeed * MERGEFORMAT �1818�
	sosDIGIGetSampleRate								4 - � pageref sosDIGIGetSampleRate * MERGEFORMAT �1919�
	sosDIGIGetSampleHandle								4 - � pageref sosDIGIGetSampleHandle * MERGEFORMAT �2020�
	sosDIGIGetSampleID								4 - � pageref sosDIGIGetSampleID * MERGEFORMAT �2121�
	sosDIGIGetSampleVolume							4 - � pageref sosDIGIGetSampleVolume * MERGEFORMAT �2222�
	sosDIGIInitDriver								4 - � pageref sosDIGIInitDriver * MERGEFORMAT �2323�
	sosDIGIInitSystem								4 - � pageref sosDIGIInitSystem * MERGEFORMAT �2424�
	sosDIGISampleDone								4 - � pageref sosDIGISampleDone * MERGEFORMAT �2525�
	sosDIGISamplesPlaying								4 - � pageref sosDIGISamplesPlaying * MERGEFORMAT �2626�
	sosDIGISetMasterVolume								4 - � pageref sosDIGISetMasterVolume * MERGEFORMAT �2727�
	sosDIGISetPanLocation								4 - � pageref sosDIGISetPanLocation * MERGEFORMAT �2828�
	sosDIGISetPanSpeed								4 - � pageref sosDIGISetPanSpeed * MERGEFORMAT �2929�
	sosDIGISetSampleRate								4 - � pageref sosDIGISetSampleRate * MERGEFORMAT �3030�
	sosDIGISetSampleVolume							4 - � pageref sosDIGISetSampleVolume * MERGEFORMAT �3131�
	sosDIGIStartSample								4 - � pageref sosDIGIStartSample * MERGEFORMAT �3232�
	sosDIGIStopSample								4 - � pageref sosDIGIStopSample * MERGEFORMAT �3333�
	sosDIGIUnInitDriver								4 - � pageref sosDIGIUnInitDriver * MERGEFORMAT �3434�
	sosDIGIUnInitSystem								4 - � pageref sosDIGIUnInitSystem * MERGEFORMAT �3535�

	Error Control Functions

	sosGetErrorString								4 - � pageref sosGetErrorString * MERGEFORMAT �3636�

	MIDI Driver Functions

	sosMIDIBranchToSongID								4 - � pageref sosMIDIBranchToSongID * MERGEFORMAT �3737�
	sosMIDIBranchToTrackID							4 - � pageref sosMIDIBranchToTrackID * MERGEFORMAT �3838�
	sosMIDIFadeSong								4 - � pageref sosMIDIFadeSong * MERGEFORMAT �3939�
	sosMIDIGetSongLocation								4 - � pageref sosMIDIGetSongLocation * MERGEFORMAT �4040�
	sosMIDIGetTrackLocation							4 - � pageref sosMIDIGetTrackLocation * MERGEFORMAT �4141�
	sosMIDIGetSongNotesOn								4 - � pageref sosMIDIGetSongNotesOn * MERGEFORMAT �4242�
	sosMIDIInitDriver								4 - � pageref sosMIDIInitDriver * MERGEFORMAT �4343�
	sosMIDIInitSong									4 - � pageref sosMIDIInitSong * MERGEFORMAT �4444�
	sosMIDIInitSystem								4 - � pageref sosMIDIInitSystem * MERGEFORMAT �4545�
	sosMIDIMT32SetInsData								4 - � pageref sosMIDIMT32SetInsData * MERGEFORMAT �4646�
	sosMIDIMuteSong								4 - � pageref sosMIDIMuteSong * MERGEFORMAT �4747�
	sosMIDIPauseSong								4 - � pageref sosMIDIPauseSong * MERGEFORMAT �4848�
	sosMIDIRegisterBranchFunction							4 - � pageref sosMIDIRegisterBranchFunction * MERGEFORMAT �4949�
	sosMIDIRegisterLoopFunction							4 - � pageref sosMIDIRegisterLoopFunction * MERGEFORMAT �5050�
	sosMIDIRegisterTriggerFunction							4 - � pageref sosMIDIRegisterTriggerFunction * MERGEFORMAT �5151�
	sosMIDIResetDriver								4 - � pageref sosMIDIResetDriver * MERGEFORMAT �5252�
	sosMIDIResetSong								4 - � pageref sosMIDIResetSong * MERGEFORMAT �5353�
	sosMIDIResumeSong								4 - � pageref sosMIDIResumeSong * MERGEFORMAT �5454�
	sosMIDISendMIDIData								4 - � pageref sosMIDISendMIDIData * MERGEFORMAT �5555�
	sosMIDISetInsData								4 - � pageref sosMIDISetInsData * MERGEFORMAT �5656�
	sosMIDISetMasterVolume							4 - � pageref sosMIDISetMasterVolume * MERGEFORMAT �5757�
	sosMIDISetSongVolume								4 - � pageref sosMIDISetSongVolume * MERGEFORMAT �5858�
	sosMIDISongAlterTempo								4 - � pageref sosMIDISongAlterTempo * MERGEFORMAT �5959�
	sosMIDISongDone								4 - � pageref sosMIDISongDone * MERGEFORMAT �6060�
	sosMIDIStartSong								4 - � pageref sosMIDIStartSong * MERGEFORMAT �6161�
	sosMIDIStopSong								4 - � pageref sosMIDIStopSong * MERGEFORMAT �6262�
	sosMIDIUnInitDriver								4 - � pageref sosMIDIUnInitDriver * MERGEFORMAT �6363�
	sosMIDIUnInitSong								4 - � pageref sosMIDIUnInitSong * MERGEFORMAT �6464�
	sosMIDIUnInitSystem								4 - � pageref sosMIDIUnInitSystem * MERGEFORMAT �6565�
	sosMIDIUnMuteSong								4 - � pageref sosMIDIUnMuteSong * MERGEFORMAT �6666�

	Timer System Functions

	sosTIMERAlterEventRate								4 - � pageref sosTIMERAlterEventRate * MERGEFORMAT �6767�	sosTIMERGetEventRate								4 - � pageref sosTIMERGetEventRate * MERGEFORMAT �6868� 	sosTIMERInitSystem								4 - � pageref sosTIMERInitsystem * MERGEFORMAT �6969�
 	sosTIMERRegisterEvent								4 - � pageref sosTIMERRegisterEvent * MERGEFORMAT �7070�
	sosTIMERRemoveEvent								4 - � pageref sosTIMERRemoveEvent * MERGEFORMAT �7171�
	sosTIMERUnInitSystem								4 - � pageref sosTIMERUnInitSystem * MERGEFORMAT �7272�

Musicians Reference

	Musicans Introduction								5 - � pageref MusicansReference * MERGEFORMAT �11�

	Description of Terms								5 - � pageref MIDITerms * MERGEFORMAT �22�
		Branching								5 - � pageref DESCBranching * MERGEFORMAT �22�
		Call Triggers								5 - � pageref DESCCallTriggers * MERGEFORMAT �22�
		Channel Stealing								5 - � pageref DESCChannelStealing * MERGEFORMAT �33�
		Looping									5 - � pageref DESCLooping * MERGEFORMAT �33�
		MIDI Triggered Digital Samples						5 - � pageref DESCMIDITriggeredSamples * MERGEFORMAT �44�
		Patch Files								5 - � pageref DESCPatchFiles * MERGEFORMAT �44�
		Track Mapping								5 - � pageref DESCTrackMapping * MERGEFORMAT �55�
		Software Wavetable Synthesis						5 - � pageref DESCSoftwareWavetableSynthesis * MERGEFORMAT �66�

	Conversion of .MID to .HMI format (MIDI2HMI)					5 - � pageref MIDI2HMI * MERGEFORMAT �77�
	Special MIDI controllers								5 - � pageref MIDIControllers * MERGEFORMAT �1111�
	Controller Quick Reference Table							5 - � pageref MIDIControllerQuickReference * MERGEFORMAT �1717�
	Composition Tips and Guidelines							5 - � pageref CompositionTips * MERGEFORMAT �1818�

HMI Device Setup Program

	HMI Setup Program								6 - � pageref SetupProgram * MERGEFORMAT �11�

Miscellaneous Technical Information

	System Architecture								7 - � pageref SystemArchitecture * MERGEFORMAT �11�
	Command Questions and Answers							7 - � pageref CommonQuestions * MERGEFORMAT �44�

�Appendices

	Appendix A - System Hardware Reference						8 - � pageref AppendixA * MERGEFORMAT �11�
	Appendix B - Using your own timer system						8 - � pageref AppendixB * MERGEFORMAT �33�

��Forward

Welcome to Sound Operating System Version 4.0. Since its introduction in 1993 the S.O.S. has been featured in over 100 games on the PC platform. Human Machine Interfaces, Inc. is dedicated to providing the best high performance development systems in the industry.

In a constant effort to increase the quality of our products we routinely conduct customer surveys to determine what aspect of our products needs the most improvement. Please feel free to contact Human Machine Interfaces, Inc. if you have any suggestions for product enhancement and/or improvement.

Human Machine Interfaces, Inc. provides unlimited comprehensive technical support to all of our clients. You will never be greeted by an answering machine or voice mail when calling for technical support. In addition, when you receive a Human Machine Interfaces, Inc. development system, you will be assigned a personal technical support representative to assist you in integrating our systems quickly into your application.

We hope that you enjoy using our development systems as much as we have enjoyed creating them.

Human Machine Interfaces, Inc.
30 East Broadway, Suite 180
Eugene, Oregon 97401

Tel	: (503) 687-6509	Monday - Friday, 7:00am - 5:00pm Pacific Standard Time
Fax 	: (503) 687-6479
BBS 	: (503) 687-5623	28.8, 8, N, 1
EMail	: hmi@efn.org
Home page : www.humanmachine.com
�System Features and Enhancements

The Sound Operating System provides a transparent interface between the sound device and the application program. This shields the developer from the vast differences in each sound device and allows seamless integration across development environments.

The S.O.S. features a very powerful digital mixer written in 100% optimized assembly language, which allows samples of different rates, bit resolution, channels and volumes to be played together on a single sound device independent of device sample rate, bit resolution, or channel support. The mixer also allows scalability to control the number of channels that can be played simultaneously to accommodate a variety of system requirements.

The digital mixer can play up to 32 simultaneous digital samples. Each sample has independent control over volume, bit resolution, channels, sample rate and pan location in a stereo mix. In addition, left and right volumes can be set on a stereo sound device to assist in 3D sound processing.

In addition, samples can easily be streamed from the hard drive or CD.

The S.O.S. also features a complete and powerful interactive MIDI playback system. The MIDI system allows musicians to compose songs that take full advantage of a sound device without having to create separate songs for each device. The MIDI system also supports the triggering digital samples directly from MIDI data to produce the highest quality music that directly interacts and “fits” the application it was design for.

The MIDI system also supports playing up to 8 simultaneous songs in addition to the ability to fade each song in or out to create custom music transitions.

�System Organization

The S.O.S. is organized in a very simple fashion. If you download the system from the HMI BBS make sure that you unzip the files with the -d (create directories) option. The following is a description of the system directory structure.

LIB

The LIB directory contains all of the required libraries for compiling and linking with the S.O.S. You may wish to move the libraries to a project area. Please refer to the “Library Naming Conventions” section immediatly following this section for naming conventions. The Digital and MIDI libraries are contained in one library.

INCLUDE

The INCLUDE directory contains all of the required header files containing data types and function declarations.

EZ

The EZ directory contains the sosEZ system. It is recommended that if you are new to this system that you utilize the sosEZ system. The sosEZ system contains the HMI setup utility under the EXE directory. The setup program must be run before running any of the examples.

DRIVERS

The DRIVERS directory contains the following files:

HMIDRV.386			Digital driver files
HMIDET.386			Digital detection driver files
HMIMDRV.386		MIDI driver files

Please note that these files are not loaded into memory in their entirety, only the required drivers are loaded.

TOOLS

The TOOLS directory contains the various tools that are required to convert MIDI songs to the HMI format.

MEGAPAT

The MEGAPAT directory contains OPL2/OPL3 .BNK files that users may license from LoudMouth. The licensing information is provided in text files inside this directory. The .BNK files provide a very accurate representation of the General MIDI sound set and may not be distributed without a license from LoudMouth.

�Library Naming Conventions

The S.O.S libraries are compiler and model specific and are named using the following naming conventions.

	sos[compiler][memory model][language][calling convention]

The [compiler] field will be one the following.

	M	Microsoft C/C++ compiler version 7.0 & 8.0
	B	Borland C/C++ compiler version 3.1 & version 4.x
	Z	Zortech C/C++ compiler version 3.1
	W	Watcom C/C++ compiler version 9.5
	1	Watcom C/C++ compiler version 10.x
	H	Metaware High C/C++ compiler
	S	Symantec C/C++ V6.x

The [memory model] field will be one of the following.

	X	386 DOS extender library/flat model

The [language] field will be one of the following.

	C	C language library
	P	C++ language library

The [calling convention] field will be one of the following:

	S	C style stack calling convention
	R	Register based calling convention

Note that only compilers such as Watcom C/C++ that support the register based calling convention will include this field in the library name.

For example, the library SOSWXCR.LIB would represent a Watcom 9.x, Flat Model DOS Extended, C calling convention Register Library..

�Differences Between 3.x and 4.0

With the introduction of version 4.0 many operations of the Sound Operating System have been made much easier and more intuitive. Many of the complexities of version 3.0 have been shielded from the developer and the data space requirements have been drastically reduced.

The following section describes the main differences between the two systems and may be skipped by users not utilizing version 3.0 of the system.

Several data structures have been renamed, these include:

Version 3.0					Version 4.0

_SOS_INIT_DRIVER			_SOS_DIGI_DRIVER
_SOS_MIDI_INIT_DRIVER		_SOS_MIDI_DRIVER
_SOS_START_SAMPLE			_SOS_SAMPLE
_SOS_MIDI_INIT_SONG			_SOS_MIDI_SONG

The application is no longer required to declare hardware definition or device capabilities structures as they have been moved into the driver structure.

Version 3.0 Structure				Version 4.0 Location

_SOS_HARDWARE				_SOS_DIGI_DRIVER
_SOS_CAPABILITIES			_SOS_DIGI_DRIVER
_SOS_MIDI_HARDWARE			_SOS_MIDI_DRIVER

In addition, the protected mode versions of the libraries all take near pointers to parameters instead of far pointers. The timer system also uses near references. All call back funcitons for digital samples and MIDI songs are now near calls. Although a few applications required the use of far pointers, the direct speed advantage of using near pointers and data references mandated the decision to utilize 32 bit near references.

The Digital and MIDI libraries have been combined into a single library now to simply the linking process.

The WORD type definition has now been properly changed to represent a 16 bit value as it should have been in the first place. The type definitions W32 and W16 have been defined to explicityly represent a 32 bit and 16 bit variable respectively.

Digital Audio System

Almost all of the structure members of the _SOS_START_SAMPLE structure have been changed. Users are now not required to set individual flags to turn on and off various system features such as bits per sample translation, pitch alteration, and volume control. These features are automatically handled internally by the digital mixing system. The wChannel element has also been eliminated, the location of the sound in the mix is now entirely controlled by the pan location. The dwSamplePitchAdd element has also been replaced by the wRate element. The pitch of a sample is now expressed in samples per second, not a fractional representation as before.

The wVolume element of the _SOS_SAMPLE structure is now a 32 bit quantity that represents the left and right volume. The upper 16 bits represent the right channel volume and the lower 16 bits represent the left volume. A macro name “MK_VOLUME” has been provided to make the volume setting process easier. The volume range is still 0 - 0x7fff. The example code fragment below demonstrates how to use the volume macro.

// set volume of a sample to half volume
sSample.wVolume	=	MK_VOLUME(0x4000, 0x4000);

The sosDIGIContinueSample function has been eliminated. When streaming a sample from hard disk or CD, you simply need to set the pfnSampleProcessed function pointer to point to your buffer service routine and when the routine is called, you will be passed a pointer to the sample that is ready for the next buffer. Set the pSample element to point to the next buffer of data and set the wLength element to the length of the new buffer. If the pSample element is not set up with a new buffer, the sample will end.

The following code fragment describes how to initialize and play an 8 bit mono unsigned digital sample using version 4.0 of the system.

// declare sample structure
_SOS_SAMPLE	sSample;

// handle of sample
W32	hSample;

// reset sample structure to a know state
memset(&sSample, 0, sizeof(_SOS_SAMPLE));

// initialize elements to 11Khz, 8 bit unsigned mono sample
sSample.pSample		=	< pointer to your sample >
sSample.wLength		=	< length of your sample in bytes >
sSample.wRate		=	11025;
sSample.wBitsPerSample	=	8;
sSample.wChannels		=	1;
sSample.wFormat		=	_PCM_UNSIGNED;
sSample.wVolume		=	_VOLUME_MAX;
sSample.wPanPosition	=	_PAN_CENTER;

// start the sample playing
hSample	=	sosDIGIStartSample(hDriver, &sSample);

MIDI System

The MIDI system now only uses .HMI file types instead of .HMI/.HMP. All versions of the S.O.S. use the same format of MIDI songs across all platforms. The allows easier porting and integration when moving to different environments such as Microsoft Windows™. You must reconvert all MIDI songs before using them with version 4.0 of the system.

The MIDI2HMI.EXE conversion utility now contains many new options to aid in the quick and easy conversion of MIDI files to the HMI format.

�
�Quick Start Tutorial / sosEZ

The following section is provided to help get first time and experienced users up and running with a minimum of technical difficulties.

The S.O.S. provides a set of 5 functions entitled ‘sosEZ’ that allow quick integration of the system into an existing application. These functions allow full exploitation of the S.O.S.’s features and capabilities, they simply shield the developer from the initialization and setup requirements. All sosEZ functions require the use of the HMI SETUP.EXE program provided with this system. The SETUP program facilitates the detection and configuration of a sound device. The SETUP program is described later in this manual.

The sosEZ system is located in the EZ directory of the S.O.S. diskettes. The following functions are provided in the sosEZ system:

Function			Description

sosEZInitSystem		Initializes sosEZ system
sosEZUnInitSystem		Uninitializes sosEZ system and releases memory
sosEZGetConfig		Retrieves sound device settings
sosEZLoadSample		Loads a digital sample and prepares it for playback
sosEZLoadSong		Loads a MIDI song and prepares it for playback
sosEZLoadPatch		Losds a MIDI bank file for FM synth.

The following reference describes each of the sosEZ functions in detail.

�sosEZGetConfig

�sosEZGetConfig
��Description

�Retrieves the current hardware configuration information saved by the HMI setup utility.

#include "sosez.h"

W32 	sosEZGetConfig(PSTR szName);

szName	Name of the configuration file to retrieve the system settings from. The default name used by the setup program is hmiset.cfg.
��Remarks
�The sosEZGetConfig function must be called before initializing the sosEZ system. This function fills in several variables with the ID values of the devices located in the configuration file. These variables are:

wDIGIDeviceID		Digital device ID
wMIDIDeviceID		MIDI device ID
��Return Value
�The sosEZGetConfig function returns the following:

_TRUE			configuration retrieved
_FALSE		configuration file not found

��See Also���

�sosEZInitSystem

�sosEZInitSystem
��Description

�Initializes the sosEZ system.

#include "sosez.h"

W32 	sosEZInitSystem(W32 wDDeviceID, W32 wMDeviceID);

wDDeviceID	Digital device ID to initialize. The wDIGIDeviceID variable will contain the device ID as retrieved from the configuration file by the sosEZGetConfig function.

wMDeviceID	MIDI device ID to initialize. The wMIDIDeviceID variable will contain the device ID as retrieved from the configuration file by the sosEZGetConfig function.

��Remarks
�The sosEZInitSystem function initializes the Digital and MIDI driver systems and store the device handles in the following variables:

hDIGIDriver 	Digital device handle
hMIDIDriver 	MIDI device handle
��Return Value
�The sosEZInitSystem function returns one of the following pre-defined error codes.

_SOSEZ_NO_ERROR	No errors were encountered
_SOSEZ_DIGI_INIT	Error initializing digital driver
_SOSEZ_MIDI_INIT	Error initializing MIDI driver
_SOSEZ_PATCH_MELODIC	Error locating melodic patch file
_SOSEZ_PATCH_DRUM	Error locating drum patch file
_SOSEZ_PATCH_INIT	Error setting patch information
��See Also�sosEZUnInitSystem��

sosEZLoadPatch

�sosEZLoadPatch
��Description

�Loads bank files for MIDI FM synth.

#include "sosez.h"

PSTR cdecl 	sosEZLoadPatch(PSTR szName);

szName Path and name of .bnk file to load.
��Remarks
�sosEZLoadPatch must be used with both a digital and a drum bank in order
to use FM synthesis.
��Return Value
�The sosEZLoadPatch function returns one of the following pre-defined error codes.

pData Pointer to the bank files in memory.
_NULL Patch was not loaded.��See Also���

�sosEZLoadSample

�sosEZLoadSample
��Description

�Loads a sample from disk and prepares it for playback.

#include "sosez.h"

_SOS_SAMPLE * sosEZLoadSample(PSTR szName);

szName	Name of the sample file to load. The sample is assumed to be an 8 bit unsigned sample. If you are playing different sample data, be sure to modify the this function.

	If you do not wish to modify the load function, you can simply set up the sample data type after the sample is loaded.
��Remarks
�The sosEZLoadSample function must be called before playing any digital samples.
��Return Value
�The sosEZLoadSample function returns the following if an error loading the sample occured:

_NULL			sample not found

Any other value represents a pointer to the current sample in memory. Note that the sample has an _SOS_SAMPLE structure before the actual sample data.

��See Also���

�sosEZLoadSong

�sosEZLoadSong
��Description

�Loads a HMI format MIDI song from disk and prepares it for playback.

#include "sosez.h"

W32 sosEZLoadSong(PSTR szName);

szName	Name of the song to load. The song must have been converted with the MIDI2HMI utility.
��Remarks
�The sosEZLoadSong function must be called before playing any MIDI songs.
��Return Value
�The sosEZLoadSong function returns the following if an error loading the song occured:

-1			song not found

Any other value represents a handle to the MIDI song. This handle will be used when starting or stopping the song.
��See Also���

�sosEZUnInitSystem

�sosEZUnInitSystem
��Description

�Uninitializes the sosEZ system and free all memory and drivers that were allocated during initialization.

#include "sosez.h"

W32 sosEZUnInitSystem(VOID);

��Remarks
�The sosEZUnInitSystem function should be called before exiting the application.
��Return Value
�None��See Also���

�The following code example demonstrates how to use the sosEZ system in a sample application. Before running this example program you must first run the HMI setup program provided with this system.

/**
*
* File : test.c
* Date Created : 2/27/95
* Description : demonstration program for sosEZ
*
* Programmer(s) : Nick Skrepetos
* Last Modification : 3/1/95 - 3:12:42 PM
* Additional Notes :
*

* Copyright (c) 1994-5, HMI, Inc. All Rights Reserved *
**/

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <ctype.h>
#include "sos.h"
#include "sosm.h"
#include "sosez.h"

The following variables are located inside the sosez.c file and are referenced by this sample application. These variables will be filled in by the sosEZGetConfig and sosEZInitSystem functions. The ID values will be passed into the sosEZInitSystem function and the driver handles will be passed to functions manipulating songs and samples.

// external variables located in sosez.c
extern W32 wDIGIDeviceID;
extern W32 wMIDIDeviceID;
extern W32 hDIGIDriver;
extern W32 hMIDIDriver;

The pSample variable will be used to point to the _SOS_SAMPLE structure that represents the digital sample. This variable will be passed to the sosDIGIStartSample function to start the sample playing.

// pointer to sample
_SOS_SAMPLE * pSample;

/**
*
* Syntax
*
* VOID	main(VOID)
*
* Description
*
* example program to demonstrate the 'sosEZ' functions
*
* Parameters
*
* none
*
* Return
*
* nothing
*
**/
VOID main(VOID)
 {
 W32 wError;
 W32 hSample;
 W32 hSong;

 // display program title
 printf("S.O.S. sosEZ Demonstration Program\n");
 printf("----------------------------------\n\n");

The first step in creating a program using sosEZ is to read the system hardware configuration to determine what type of hardware is being used and what the various settings are. The sosEZGetConfig function reads the .ini file created by the HMI setup utility. The variables wDIGIDeviceID and wMIDIDeviceID will be filled in with the hardware ID values of the devices being used.

 // retrieve configuration information from .cfg file
 if (!sosEZGetConfig("hmiset.cfg"))
 {
 // display error
 printf("ERROR : Could not locate 'hmiset.cfg' file. Make\n");
 printf(" sure that you have run 'setup.exe' first.\n");

 // exit
 exit(1);
 }

After the configuration has been retrieved, the system must be initialized. The sosEZInitSystem function is passed the ID’s of both the Digital and MIDI device to initialize. If a negative one (-1) is passed in place of the ID, the device will not be initialized.

 // initialize system
 if (sosEZInitSystem(wDIGIDeviceID, wMIDIDeviceID))
 {
 // display error
 printf("ERROR : Could not initialize digital/MIDI driver. Make\n");
 printf(" sure that the .386 files are in the current\n");
 printf(" directory.\n");

 // exit
 exit(1);
 }

At this point in the program, the application should load in the digital sample(s) that you will be playing. Note that our example program demonstrates only loading one sample, but of course your application may require many more samples.

 // load digital sample
 if ((pSample = sosEZLoadSample("test.raw")) == _NULL)
 {
 // display error
 printf("ERROR : Could not locate digital sample 'test.raw'.\n");

 // uninitialize system
 sosEZUnInitSystem();

 // exit
 exit(1);
 }

The application may also require a MIDI song or songs. The sosEZLoadSong function simplifies the loading and initializing MIDI songs. The _SOS_MIDI_SONG structure will be allocated and initialized by this function and the application will be returned a handle that will be used to start, stop and modify the song.

 // load midi song
 if ((hSong = sosEZLoadSong("test.hmi")) == -1)
 {
 // display error
 printf("ERROR : Could not locate MIDI song 'test.hmi'.\n");

 // uninitialize system
 sosEZUnInitSystem();

 // exit
 exit(1);
 }

 // display progress
 printf("\nPlaying Digital and MIDI data, press any key to stop.\n");

At this point in the application the system is full initialized and running. The application may now start any number of songs or samples. Note that after songs and samples are started they may be modified by any of the standard S.O.S. system calls such as: sosDIGISetPanLocation, sosDIGISetSampleRate, etc..

 // start song
 sosMIDIStartSong(hSong);

 // start digital sample
 hSample = sosDIGIStartSample(hDIGIDriver, pSample);

 // wait for sample to complete
 while((!sosDIGISampleDone(hDIGIDriver, hSample) ||
 !sosMIDISongDone(hSong)) && !kbhit());

It is a good idea to make sure that the song is stopped before uninitializing the system to make sure that the timer event associated with the song has been properly released.

 // stop song
 sosMIDIStopSong(hSong);

The sosEZUnInitSystem function will unload all system drivers and free up all memory allocated to the system.

 // uninitialize system
 sosEZUnInitSystem();
 }

�Data Structures Reference

The data structure reference section describes the various data structures that will be used by the application to communicate with the S.O.S.

Structure			Location		Description

_SOS_CAPABILITIES		sos.h			Digital device capabilities
_SOS_DIGI_DRIVER		sos.h			Digital device initialization structure
_SOS_HARDWARE		sos.h			Digital device hardware description
_SOS_SAMPLE			sos.h			Digital sample definition structure

_SOS_MIDI_DRIVER		sosm.h			MIDI device initialization structure
_SOS_MIDI_HARDWARE	sosm.h			MIDI device hardware description
_SOS_MIDI_SONG		sosm.h			MIDI song definition structure

The _SOS_HARDWARE and _SOS_CAPABILITIES structures are imbeded inside the _SOS_DIGI_DRIVER structure to avoid unnecessary structure maintenance by the application program.

�_SOS_CAPABILITIES

typedef	struct	_tagCAPABILITIES
		{

			BYTE	szDeviceName[32];	// device name
			W32	wDeviceVersion;		// device version
			W32	wBitsPerSample;		// bits per sample
			W32	wChannels;			// stereo/mono
			W32	wMinRate;			// minimum rate
			W32	wMaxRate;			// maximum rate
			W32	wMixerOnBoard;		// contains mixer
			W32	wMixerFlags;		// mixer data
			W32	wFlags;			// misc flags

			short	far * lpPortList;		// port list
			short	far * lpDMAList;		// DMA channels
			short	far * lpIRQList;		// IRQ list
			short	far * lplpRateList;	// available rates

			W32	fBackground;		// background
			W32	wID;				// device ID
			W32	wTimerID;			// ID for mixer

		} _SOS_CAPABILITIES;

The _SOS_CAPABILTIES structure describes an HMI format digital driver. The application may access data such as available ports, DMA channels, IRQ’s and many other useful pieces of information from this structure.

This structure is automatically filled in by the system and is contained inside the _SOS_DIGI_DRIVER structure.

Members

szDeviceName

A null terminated string that identifies the digital driver. This string may be used by a setup program to display the device name or used for debugging purposes.

wDeviceVersion

The version of a particular device. This may be used to indentify different versions of drivers containing similiar chipsets.

wBitsPerSample

The number of bits per sample. This value will be either 8 or 16.

wChannels

The number of channels that the device supports. This value will be 0 for mono and 1 for stereo.

wMinRate

The minimum rate that the device can input or output sample data.

wMaxRate

The maximum rate at which the device can input or output sample data.

wMixerOnBoard

A flag that indicates of the sound device contains its own on board mixer control.

wMixerFlags

A bit field that contains the various features of a mixer. This field is currently not used by the S.O.S. but may be used in a future version.

wFlags

A bit field that describes the various characteristics of a sound device. The following represents the various values this field may contain.

_SOS_DCAPS_AUTO_REINIT

The device supports auto-reinitialize DMA. Most devices support this feature directly, but some devices such as the early Sound Blaster series to not.

_SOS_DCAPS_MPU_401

The device contains an onboard MPU-401 type MIDI device.

_SOS_DCAPS_OPL2

	The device contains and OPL2 type synthesis chip.

_SOS_DCAPS_OPL3

	The device contains and OPL3 type synthesis chip.

_SOS_DCAPS_OPL4

The device contains and OPL4 type synthesis chip. Note that the OPL4 device is supported only as an OPL3 type devivce in the S.O.S.

_SOS_DCAPS_WAVETABLE

The device contains a wavetable synthesis chipset. An example of this type of device is an Ensoniq Soundscape or AWE32.

_SOS_DCAPS_DL_SAMPLES

The device provides the ability to download samples directly to onboard ram in the device. An example of this type of device is the Gravis UltraSound or AWE32.

_SOS_DCAPS_FIFO_DEVICE

The device does not support DMA but instead uses a FIFO to handle data input/output. An example of this type of device is the Disney SoundSource.

_SOS_DCAPS_ENV_NEEDED

The device requires an environment variable to retrieve settings and function properly. An example of this type of device is the Gravis UltraSound.

_SOS_DCAPS_PSUEDO_DMA1

The device does not support DMA but uses another method, such as shared memory, to communicate with the device. An example of this type of device is the .WAVJammer PCMCIA sound device.

_SOS_DCAPS_SIGNED_DATA

The device requires signed data. An example of this type of device is the Adlib Gold 1000/2000.

lpPortList

A pointer to a list of available ports. The list is terminated by a negative one (-1) value.

lpDMAList

A pointer to a list of available DMA channels. The list is terminated by negative one (-1) . Note that if the first element in the list is -1 then the device does not require a DMA channel setting to operate.

lpIRQList

A pointer to a list of available IRQ settings. The list is terminated by a negative one (-1). Note that if the first element in the list is -1 then the device does not require an IRQ to operate.

lpRateList

A pointer to a list of available samples rates at which the sound device can operate. The list is terminated by a negative one (-1). If the first element in the list is -1, then all rates between wMinRate and wMaxRate are available.

fBackground

A flag that indicates if the device can process data in the background. Currently all devices supported in the S.O.S. process data in the background.

wID

The internal system ID of the device. A list of available device IDs can be found in the sos.h include file and in the Appendix section of this manual.

wTimerID

This member is not used in version 4.0 of the system and is retained only for compatibility reasons.

�_SOS_DIGI_DRIVER

typedef	struct	_tag_sos_driver
	{

		WORD	wFlags;			// system flags
		DWORD	wDriverRate;		// driver rate
		DWORD	wDriverChannels;		// driver channels 1/2
		DWORD	wDriverBitsPerSample;	// driver bits 8/16
		DWORD	wDriverFormat;		// format of driver

		DWORD	wMixerChannels;		// number of channels

		DWORD	wDMACountRegister;	// DMA counter port
		DWORD	wDMAPosition;		// DMA current position
		DWORD	wDMALastPosition;		// DMA last position
		DWORD	wDMADistance;		// DMA distance moved

		PSTR	pXFERPosition;		// transfer position
		DWORD	wXFERJumpAhead;		// DMA jump ahead

		_SOS_SAMPLE * pSampleList;	// pointer to list
		VOID (far * 			// pointer to the
pfnPseudoDMAFunction)		// PSEUDO-DMA
(VOID);				// callback function

		PSTR	pDMABuffer;			// DMA buffer
		PSTR	pDMABufferEnd;		// DMA buffer end
		DWORD	wDMABufferSize;		// DMA buffer size

		PSTR	pMixingBuffer;		// construction buffer
		PSTR	pMixingBufferEnd;		// end pointer
		DWORD	wMixingBufferSize;	// buffer size
		DWORD	wActiveChannels;		// active samples

		_SOS_SAMPLE * 	pSamples;	// sample memory
		_SOS_HARDWARE	sHardware;	// device hardware info
		_SOS_CAPABILTIES	sCaps;	// device capabilites

		LPSTR	lpDriverDS;			// driver DS
		LPSTR	lpDriverCS;			// driver CS

		W32	wSize;			// driver in memory size
		DWORD	dwLinear;			// linear address
		DWORD	dwDMAPhysical;		// DMA physical address
		LPSTR	lpDMABuffer;		// DMA buffer pointer
		W32	hMemory;			// memory handle
		W32	wDMARealSeq;		// real mode segment

		W32	wID;				// driver ID

		VOID (*pfnMixFunction)(VOID);

	} _SOS_DIGI_DRIVER;

The _SOS_DIGI_DRIVER structure describes an instance of an HMI format digital audio driver.

Members

wFlags

Various system flags used internally by the system when initializing or reinitializing a driver.

The following are bit field flags that are associated with the structure member.

_SOS_DRV_INITIALIZED

The digital driver has been initialized by the system and is currently active.

_SOS_DRV_LOADED

The digital driver memory has been allocated and the driver is loaded and ready to use.

_SOS_DRV_DMA_BUFFER_ALLOCATED

The DMA buffer for a device has been allocated. This flag is used to avoid reallocating additional memory if the digital driver has been uninitialized without freeing the DMA buffer.

wDriverRate

Sample rate that driver is initialized. The sample rate is expressed in samples per second.

wDriverChannels

Number of channels that the device supports. The value will be either 1 for mono, or 2 for stereo. The system provides pre-defined enumerations for those values.

_PCM_MONO			Mono sound device
_PCM_STEREO		Stereo sound device

wDriverBitsPerSample

The number of bits per PCM sample. This value will be either 8 or 16. The system provides pre-defined enumerations for those values.

_PCM_8_BIT		8 bit sound device
_PCM_16_BIT		16 bit sound device

wDriverFormat

The current format of the driver. This member is a set of bit fields that can be accessed with the following pre-defined enumerations.

_DRV_UNSIGNED

This flag indicates that the device accepts unsigned data. Most 8 bit PCM devices process unsigned data and typically 16 bit devices process signed data.

_DRV_SWAP_CHANNELS

This flag is provided to allow the driver to automatically “swap” the channels from left/right to right/left. This can be used if a user has their speakers plugged in incorrectly. This flag can be set to correct the problem and requires no additional processor overhead.

wMixerChannels

The maximum number of channels that the digital mixer will process when mixing samples. This member is provided to allow system scalability so that on slower systems the value can be decreased or on faster systems the value can be increased to control the amount of processor overhead that is used.

This value is initialized to the _MAX_CHANNELS equate that is defined in the sos.h include file.

wDMACountRegister

The DMA register to read to determine the current location of the DMA controller. This register is used internally by the digital mixer to determine where to start mixing data into the DMA buffer.

wDMAPosition

Current location of the system DMA controller that the sound device is using. This value will be updated by the digital mixer each timer tick and moves from 0 to the size of the DMA buffer.

wDMALastPosition

Position the DMA controller was at on the last timer tick. This value is saved to compute the distance the DMA controller has moved in a timer tick.

wDMADistance

Distance the system DMA controller has moved, in bytes, since the last timer tick.

pXFERPosition

Position in the DMA buffer that the mixer will mix the next chunk of data into.

wXFERJumpAhead

The number of bytes the mixer is to “jump ahead” of the DMA controller when a new sample is started and no other samples are active. This value is automatically computed by the system and used internally.

pSampleList

Pointer to the head of the list of currently active samples. This pointer is updated by the sosDIGIStartSample routine and internally by the mixer and should not be altered by the application.

pDMABuffer

Pointer to the physical DMA buffer for the current digital device. This buffer will be automatically allocated by the sosDIGIInitDriver function.

pDMABufferEnd

Pointer to the end of the physical DMA buffer. This member is used internally by the system.

wDMABufferSize

The size, in bytes, of the physical DMA buffer. This buffer should be under 4K in size if you want the application to run under a Windows™ or OS/2 DOS session.

pMixingBuffer

Pointer to the mixing temporary construction buffer. This buffer is used to mix samples into before they are copied into the DMA buffer. This buffer is allocated internally by the system and should not be altered by the application.

pMixingBufferEnd

Pointer to the end of the mixing construction buffer. This pointer is used internally by the digital mixer.

wMixingBufferSize

Size, in bytes, of the mixing construction buffer. The buffer size is computed by the system and should not be altered by the application.

wActiveChannels

Number of active channels (samples). The application can read this value directly or use the sosDIGISamplesPlaying to return the number of active samples.

pSamples

Pointer to the list of samples used internally by the digital mixer. This memory is allocated by the sosDIGIInitDriver function and should not be altered by the application.

sHardware

Hardware description structure describing the current device settings including: port, DMA, and IRQ. A complete description of this structure can be found further on in this manual.

sCaps

Capabilities description structure providing complete capabilities of a digital device including: available sampling rates, MIDI device support, etc..

A complete description of this structure can be found further on in this manual.

lpDriverDS

Pointer to the digital driver memory. The pointer has been created with read/write access to the driver memory. This value should not be altered by the application.

lpDriverCS

Pointer to the digital driver memory. The pointer has been created with read/execute access to the driver memory. This value should not be altered by the application.
wSize

The size, in bytes, of the currently loaded driver.

dwLinear

Linear offset in flat model memory of the digital driver. This is used internally by the system and should not be altered by the application.

dwDMAPhysical

Physical address of DMA buffer in memory. This is used internally by the system and should not be altered by the application.

lpDMABuffer

Far pointer used internally by the system pointing to the DMA buffer.

hMemory

wDMARealSeq

Real mode segment of DMA buffer used for physical address calculation and DMA controller programming.

wID

Device ID of the current digital driver. A list of valid device ID’s is available in the appendix section of this manual or in the include file sos.h.

pfnMixFunction

Pointer to the current mixer routine that is active for this driver.

�_SOS_HARDWARE

typedef	struct
		{

			W32	wPort;		// device port
			W32	wDMA;			// device DMA
			W32	wIRQ;			// device IRQ
			W32	wParam;		// misc parameter

		} _SOS_HARDWARE;

The _SOS_HARDWARE structure describes the hardware settings of a digital driver. This structure is imbedded inside the _SOS_DIGI_DRIVER structure for convienence and is filled in automatically by the detection system.

Members

wPort

The current port setting for a device. A -1 indicates that the device does not require a port setting.

wDMA

The current DMA channel for a device. A -1 indicates that the device does not require DMA.

wIRQ

The current IRQ for a sound device. A -1 indicates that the device does not require an IRQ.

wParam

Reserved for system use.

�_SOS_SAMPLE

typedef	struct	_tag_sos_sample
	{

		PSTR	pSample;		// pointer to sample
		PSTR	pSampleCurrent;	// current location
		PSTR	pSampleLoop;	// loop location

		DWORD	wLength;		// length of sample
		DWORD	wLoopLength;	// length of loop
		DWORD	wLoopEndLength;	// length of loop end
		DWORD	wLoopStage;		// ASR stage

		DWORD	wID;			// sample ID
		DWORD	wFlags;		// sample flags
		DWORD	wPriority;		// priority of sample
		DWORD	hSample;		// handle to sample

		DWORD	wVolume;		// volume
		DWORD	wLoopCount;		// loop count

		DWORD	wRate;		// sample rate
		DWORD	wBitsPerSample;	// sample size 8/16
		DWORD	wChannels;		// channels per sample
		DWORD	wFormat;		// sample format

		DWORD	wPanPosition;	// pan position
		DWORD	wPanSpeed;		// speed of auto pan
		DWORD	wPanStart;		// start of pan
		DWORD	wPanEnd;		// end of pan
		DWORD	wPanMode;		// mode: ONCE, PING-PONG

		DWORD	wTotalBytesProcessed;

		VOID 	(cdecl * pfnSampleProcessed)(struct
			_tag_sos_sample *);
		VOID	(cdecl * pfnSampleDone) (struct
			_tag_sos_sample *);
		VOID	(cdecl * pfnSampleLoop) (struct
			_tag_sos_sample *);

		DWORD	wSystem[16];	// system data
		DWORD	wUser[16];	// user data

		struct _tag_sos_sample * pLink;
		struct _tag_sos_sample * pNext;

	} _SOS_SAMPLE;

The _SOS_SAMPLE structure describes a digital audio sample. The sample is automatically translated to the format of the driver. This allows transparent use of many different formats and types of sample on a single driver.
�Members

pSample

Pointer to the sample data. The pointer is a 32 bit linear memory pointer to the sample data. This pointer must be set up by the application prior to calling the sosDIGIStartSample function to start the sample playing.

pSampleCurrent

Internal pointer used by the digital mixer to keep track of where in the current sample it is mixing. This pointer must not be modified by the application program.

pSampleLoop

Pointer to the start of the looping section of any ASR loop sample. This pointer is initialized by the sosDIGIStartSample function and must not be modified by the application program.

wLength

Length of the sample in bytes. The length must be set up by the application prior to starting the sample.

wLoopLength

Length, in bytes, of the sustain (middle) looping section of the sample. The loop length must be initialized by the application prior to starting the sample.

wLoopEndLength

Length, in bytes, of the release (end) loop section of a sample. This value is initialized by the sosDIGIStartSample function and must not be modified by the application program.

wLoopStage

Current stage, Attack, Sustain, Release, of a ASR looping sample. This value must not be modified by the application program.

wID

User defined sample ID. This is maintained entirely by the application and can be any value.

wFlags

Flags field represented as a set of bit field flag values. The system uses the following values internally:

_SACTIVE		sample is active and playing
_SPROCESSED		sample is out of data, pending completion
_SDONE		sample is completely done playing

wPriority

User defined sample priority. The priority is used by the sosDIGIStartSample function to control where the sample is inserted in to the sample play list. The priority only has an effect when more sample are attempting to be played that the wMixerChannels has allowed.

Priority values closest to zero (0) will have the highest priority and will be played until completed. The samples with lower priority will be played when there are available mixer channels.

hSample

Handle of the sample as assigned internally by the sosDIGIStartSample function. The handle may be used in a call back function to access data if desired.

wVolume

Volume of sample. The volume is expressed as a 32 bit quantity with the upper 16 bits controlling the right channel and the lower 16 bits controlling the left channel. The macro MK_VOLUME is provided to assist in setting the left and right volumes.

// set left and right sample volumes to half volume
sSample.wVolume	=	MK_VOLUME(0x4000, 0x4000);

The individual volume is represented as a 16 bit value ranging from no volume (0) to full volume (0x7fff).

wLoopCount

Number of times to loop the sample. The value is zero based. To play a sample only once through this value would be set to zero. A sample may be looped infinitely by setting the loop count to -1.

An infinitely looping sample may be stopped by the sosDIGIStopSample function.

wRate

Sample rate expressed in samples per second. The system automatically translates the sample based on its rate so that it will play correctly on any driver type.

The sample rate can be adjusted in realtime by using the sosDIGISetRate function.

wBitsPerSample

Number of bits, 8 or 16, per sample. The system automatically translates the sample to the number of bits per sample of the audio driver.

The system provides pre-defined enumerations for this field.

_PCM_8_BIT		8 bit PCM data
_PCM_16_BIT		16 bit PCM data

wChannels

Number of audio channels the sample contains. This field must be set to either mono (1) or stereo (2). The system automatically translates the sample to the format of the driver.

The system provides pre-defined enumerations for stereo and mono.

_PCM_MONO		mono sample
_PCM_STEREO		stereo interleaved sample

wFormat

Format of the sample. This field contains bit field flags that control the format of sample. Typically 8 bit data is unsigned and 16 bit data is signed, but this may not always be the case.

The available options for this field include:

_PCM_UNSIGNED		unsigned data format
_PCM_SWAP_CHANNELS	swap channels from LR to RL

The default format form samples is signed data. The _PCM_SWAP_CHANNELS flag is useful for reversing the stereo field for a single sample.

wPanPosition

The current balance in a stereo field of a sample. The pan position works like a balance setting on a home stereo. The pan position may be adjusted in real-time using the sosDIGISetPanLocation function.

The pan position ranges from extreme left (0) to extreme right (0xffff) with center being a value of 0x8000.

Several pre-defined enumerations exist for setting the pan position to left, right and center.

_PAN_LEFT		sound plays out left side
_PAN_CENTER		sound plays out left and right side
_PAN_RIGHT		sound plays out right side

wPanSpeed

Reserved for future use.

wPanStart

Reserved for future use.

wPanEnd

Reserved for future use.

wPanMode

Reserved for future use.

wTotalBytesProcessed

Number of physical bytes processed in the current sample.

pfnSampleProcessed

Pointer to the function to call when the sample data is completely mixed into the output buffer but is still audible. This call back is used to stream samples without a break between buffers. If this pointer is NULL, no call back will be issued.

When this function is called, a pointer to the current sample structure is passed into the function and the pSample memory is set to zero. If you wish to continue the sample, set the pSample pointer and the length (wLength) of the next chunk and the sample will continue seamlessly.

The application may alter any of the user adjustable parameters directly inside this function.

Note that this function is called under interrupt so you may not execute any DOS commands inside this function. In addition, do not spend an inordinate amount of time inside any of the call back functions.

An example call back function follows:

// example callback function
VOID	cdecl	hmiProcessedCallback(_SOS_SAMPLE * sSample)
{
	// continue block
	sSample.pSample	=	pNextBlock;
	sSample.wLength	=	wNextBlockLength;
}

pfnSampleDone

Pointer to the function to call when the sample data is completely done playing and is no longer audible. If this pointer is NULL, no call back will be issued.

When this function is called, a pointer to the current sample structure is passed into the function.

Note that this function is called under interrupt so you may not execute any DOS commands inside this function. In addition, do not spend an inordinate amount of time inside any of the call back functions.

An example call back function follows:

// example callback function
VOID	cdecl	hmiDoneCallback(_SOS_SAMPLE * sSample)
{
	// set done flag
	wSampleDone	=	_TRUE;
}

pfnSampleLoop

Pointer to the function to call when the sample reaches the end and is looped back to the start. This call back can be used to synchronize video events attached to a specific looping sound. If this pointer is NULL, no call back will be issued.

When this function is called, a pointer to the current sample structure is passed into the function. The application may alter any of the user adjustable parameters directly inside this function.

Note that this function is called under interrupt so you may not execute any DOS commands inside this function. In addition, do not spend an inordinate amount of time inside any of the call back functions.

An example call back function follows:

// example callback function
VOID	cdecl	hmiLoopCallback(_SOS_SAMPLE * sSample)
{
	// count loops
	wLoopCount++;
}

wSystem

Reserved for use internally by the system and must not be altered by the application.

wUser

User data that may be used by the application and is not altered by any of the system routines.

pLink

Pointer to the next user sample structure to play when a sample has been entirely processed into the mixing construction buffer. This can be used when creating a single sample composed of many smaller samples. An example would be to create sentences out of many words.

This pointer can also be used to process a circular list of buffers for streaming from the harddrive or CD.

In the following example, sample1 would play first then sample2. If pLink is NULL the mixer will end processing of the user sample chain and will continue normal system processing of the next sample.

// set link to point to sample2
sSample1.pLink	=	&sSample2;

// sample2 ends the list
sSample2.pLink	=	_NULL;

pNext

Pointer to the next sample in the master sample chain. The application must not alter this pointer.

�_SOS_MIDI_DRIVER

typedef	struct	_tag_midi_driver
	{

		W32	wID;
		W32	wDIGIID;

		VOID	far * lpDriverMemoryDS;
		VOID	far * lpDriverMemoryCS;

		PSOSMIDIDIGIDRIVER pDIGIInit;

		W32	wParam;
		DWORD	dwParam;

		_SOS_MIDI_HARDWARE sHardware;

	} _SOS_MIDI_DRIVER;

The _SOS_MIDI_DRIVER structure describes an instance of an HMI format MIDI driver. Note that the MIDI hardware structure is contained within this structure.

Members

wID

Device ID of the MIDI driver. A list of available device ID values can be found in the sosm.h header file.

wDIGIID

ID of the digital device that is associated with a particular MIDI device. This is used when utilizing the Software Wavetable Synthesis or MIDI triggered digital samples.

lpDriverMemoryDS

A far pointer to the driver memory with read/write access.

lpDriverMemoryCS

A far pointer to the driver memory with read/execute access.

pDIGIInit

Pointer to the _SOS_MIDI_DIGI_DRIVER structure associated with the MIDI driver.

wParam

Extra parameter used by the system.

dwParam

Extra parameter used by the system.

sHardware

Hardware description structure containing the Port and IRQ parameters of the MIDI device. A complete description of this structure can be found in this section.

�_SOS_MIDI_SONG

typedef	struct	_tag_sos_midi_song
{
	PSTR	pSong;			// pointer to the song

	VOID	(*pfnCallback)(W32);// pointer to song callback

	PSTR	pTemp1;			// alignment data
	PSTR	pTemp2;			// alignment data
	DWORDshort	wTemp1;			// alignment data

} _SOS_MIDI_SONG;

The _SOS_MIDI_SONG structures describes an instance of a MIDI song. The song must have been previously converted to an HMI format file using the MIDI2HMI utility.

Members

pSong

Pointer to an HMI format MIDI song. If you are using a virtual memory system make sure that the entire song memory is locked so that it will not be swapped out when memory is low. The song memory is accessed under interrupt.

pfnCallback

Pointer to the function to call when a song has completed playing. You may restart the song in the callback function by calling the sosMIDIStartSong function.

The handle of the song is passed to the callback function. The song handle is required to restart the song.

An example callback function follows:

// example callback function to loop a MIDI song when
// it has completed playing.
VOID	hmiMIDISongCallback(WORD hSong)
{
	// start song again
	sosMIDIStartSong(hSong);
}

pTemp1..pTemp2

Structure alignment variables required to retain alignment with the Windows™ system.

wTemp1

Structure alignment variable to retain alignment with the Windows™ system.

�
Function Reference

The following section describes all of the Digital, MIDI, and TIMER functions that are user accessible in the S.O.S. Many of the functions may not need to be used by your application as they are encapsulated inside the sosEZ system and are documented for reference only. It is recommended that you utilize the sosEZ system to avoid problems with system initialization and set up.

Some of the functions included in the system are provided to assist users writing utility programs that may utilize the system.

�Sound Card Detection

The sound card detection routines allow you to determine which sound hardware, if any, is installed in the system. In addition to detecting hardware, these routines also are capable of retrieving the current Port, DMA, and IRQ settings.

It is important to note that some sound devices do not provide the capability of being auto detected by these routines. It is advisable that you verify the card selection with the user during the configuration phase of the application.

Routine					Use
sosDIGIDetectInit			Initializes the detection system
sosDIGIDetectUnInit			Uninitializes the detection system
sosDIGIDetectFindHardware		Attempts to find a specific sound device
sosDIGIDetectFindFirst			Finds the first occurrence of a sound device
sosDIGIDetectFindNext			Finds the next occurrence of a sound device
sosDIGIDetectGetSettings		Get the current settings of a sound device
sosDIGIDetectGetCaps			Get the current capabilities of a sound device

Note that if no sound card is installed in the system, the internal speaker is assumed to be always present.

Initialization

The initialization routines are required to be called before any sound processing can occur. They only need to be called once at the beginning of your application, and at the end before exiting.

The sosDIGIInitSystem routine must be called before sosDIGIInitDriver. You may request a specific sound driver or allow the detection routines to locate one for you.

Routine					Use
sosDIGIInitSystem			Initializes the Sound Operating System
sosDIGIUnInitSystem			Uninitializes the Sound Operating System
sosDIGIInitDriver			Loads a sound driver into the system
sosDIGIUnInitDriver			Unloads a sound driver from the system
�Sample Manipulation

The sample manipulation routines allow the user to start and stop samples, set the sample volume, and determine when a sample has finished being processed by the system.

Routine					Use
sosDIGIStartSample			Starts a sound sample playing/recording
sosDIGIStopSample			Stops a sample that is currently active
sosDIGIGetSampleVolume		Retrieves the current volume of a sample
sosDIGISetSampleVolume		Sets the volume of a sample that is playing
sosDIGIGetSampleRate			Retrieves the current rate of a sample
sosDIGISetSampleRate			Sets the current output rate for a sample
sosDIGIGetPanLocation			Retrieves the pan location of a sample
sosDIGISetPanLocation			Sets the current pan location for a sample
sosDIGIGetPanSpeed			Retrieves the current pan speed of a sample
sosDIGISetPanSpeed			Sets the current panning speed of a sample
sosDIGIGetLoopCount			Retrieves the current loop count of a sample
sosDIGIGetSampleHandle		Retrieves the handle of a sample based on ID
sosDIGIGetSampleID			Retrieves the ID of a sample based on the handle
sosDIGIGetBytesProcessed		Retrieves the total bytes processed in a sample
sosDIGISetMasterVolume		Sets the volume of the entire mix of samples
sosDIGISampleDone			Determines if a sample is done playing yet
sosDIGISamplesPlaying			Determines the number of samples current playing

Sound Driver Manipulation

The sound driver manipulation routines allow the retrieval of information about driver internal operation.

Routine					Use
sosDIGIGetDMAPosition		Retrieves the current DMA position.

� MIDI System Initialization

The MIDI system initialization routines must be called before any other MIDI functions are called. The initialization routines are responsible for setting up the system timer services and initializing the internal system.

Routine					Use
sosMIDIInitSystem			Initializes the MIDI playback system
sosMIDIUnInitSystem			Uninitializes the MIDI playback system
sosMIDIInitDriver			Initializes a specific MIDI device
sosMIDIUnInitDriver			Uninitializes a specific MIDI device
sosMIDIResetDriver			Resets a MIDI device driver

MIDI Song Manipulation

The MIDI song manipulation routines allow the user to start and stop songs, pause and resume songs, and determine when a song has completed playing.

Routine					Use
sosMIDIInitSong			Initializes a song for playback
sosMIDIUnInitSong			Uninitializes a song
sosMIDIResetSong			Resets a song
sosMIDIStartSong			Starts a previously loaded song
sosMIDIStopSong			Stops a previously started song
sosMIDISetSongVolume			Sets the volume of a single song
sosMIDIFadeSong			Fades a song in or out over a specified time period
sosMIDIMuteSong			Mutes a single song
sosMIDIUnMuteSong			UnMutes a previously muted song
sosMIDIPauseSong			Pauses a song
sosMIDIGetSongLocation		Retrieves location within a song.
sosMIDIGetTrackLocation		Retrieves location within a track.
sosMIDIGetSongNotesOn		Retrieves the number of currently playing notes
sosMIDIResumeSong			Resumes playback of a paused song
sosMIDISongDone			Determines if a song is done playing
sosMIDISongAlterTempo		Alters the tempo of a song
sosMIDIBranchToSongID		Branches to a global branch controller
sosMIDIBranchToTrackID		Branches to a local branch controller
sosMIDIRegisterBranchFunction		Registers a function to call on a branch controller
sosMIDIRegisterLoopFunction		Registers a function to call on the end of a loop
sosMIDIRegisterTriggerFunction	Registers a function to call on a call back trigger
�MIDI Patch Manipulation

The MIDI patch manipulation routines allow the user to initialize both DIGITAL and FM patch files for the MIDI system. Also included is a routine to send MIDI data directly to a MIDI device.

Routine					Use
sosMIDISetInsData			Sets patch data for a MIDI device
sosMIDIMT32SetInsData		Sets patch data for an MT-32 MIDI device
sosMIDISendMIDIData			Sends data directly to a MIDI device

Timer Services

The timer service routines allow the user to install and remove timer 'events'. Up to 16 timer events may be registered at one time. The timer function may be used by your application to control timed events.

Each MIDI song that is playing uses a timer event. Please refer to the timer services section of this manual for a more detailed description of these services.

Routine					Use
sosTIMERInitSystem			Initializes the timer system
sosTIMERUnInitSystem			Uninitializes the timer system
sosTIMERRegisterEvent			Registers a timer event with the system
sosTIMERAlterEventRate		Alters the frequency of a timer event
sosTIMERRemoveEvent			Removes a timer event from the system
sosTIMERGetEventRate			Retrieves frequency of a timer event
� sosDIGIDetectGetCaps

�sosDIGIDetectGetCaps
��Description

�This function fills in the capabilities structure of a digital driver with the current capabilities of the sound device.

#include "sos.h"

W32 	sosDIGIDetectGetCaps(W32 wDeviceID,
				PSOSDIGIDRIVER pDriver);

wDeviceID	ID of the device of which to get the capabilities. A list of ID values can be found in the include file sos.h or in the hardware section of this manual.

pDriver		Pointer to an _SOS_DIGI_DRIVER type structure.
��Remarks
�The sosDIGIDetectGetCaps function must be called after calling the sosDIGIDetectInit function.

This function does not perform any detection of the sound device and is ideal for use with install and setup programs. After calling this function the capabilities structure will be filled with all the information about all possible Ports, DMA, and IRQs that the device can support. In addition, the sampling rate and bits per sample are included in the structure.
��Return Value
�The sosDIGIDetectGetCaps function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The function correctly filled in
				the capability structure.

_ERR_INVALID_POINTER		A NULL pointer was passed

��See Also�sosDIGIDetectGetSettings��

�sosDIGIDetectGetSettings

�sosDIGIDetectGetSettings
��Description

�This function fills in the hardware structure inside a digital driver with the current settings of the sound device detected by the sosDIGIDetectFindFirst, sosDIGIDetectFindHardware and sosDIGIDetectFindNext functions.

#include "sos.h"

W32 	sosDIGIDetectGetSettings(PSOSDIGIDRIVER pDriver);

pDriver		Pointer to an _SOS_DIGI_DRIVER structure.
��Remarks
�The sosDIGIDetectGetSettings function may only be called after calling the sosDIGIDetectInit function and after calling either the sosDIGIDetectFindFirst, sosDIGIDetectFindNext or sosDIGIDetect FindHardware functions.

The hardware settings are stored in the _SOS_HARDWARE structure inside the digital driver structure.
��Return Value
�The sosDIGIDetectGetSettings function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The function correctly filled in
				the hardware structure.

_ERR_INVALID_POINTER		A NULL pointer was passed

_ERR_DRIVER_NOT_LOADED		No detection driver was loaded

��See Also�sosDIGIDetectInit, sosDIGIDetectFindHardware, sosDIGIDetectFindFirst, sosDIGIDetectFindNext��
�sosDIGIDetectFindFirst

�sosDIGIDetectFindFirst
��Description

�This function finds the first sound device installed in the system.

#include "sos.h"

W32 	sosDIGIDetectFindFirst(PSOSDIGIDRIVER pDriver);

pDriver		Pointer to an _SOS_DIGI_DRIVER type structure.
��Remarks
�The sosDIGIDetectFindFirst function may only be called after calling the sosDIGIDetectInit function.

This function will find the device with the greatest capablities, ie. 16 bit stereo. To locate other variations of the device, call the sosDIGIDetectFindNext function. The system will always locate device capabilities in the following order:

	16 Bit Stereo
	16 Bit Mono
	 8 Bit Stereo
	 8 Bit Mono

Note that this function will not find multiple occurances of the same sound device. ie. two Sound Blaster devices in one machine

To use more than one sound device in the system you must explicitly define the Port, DMA, and IRQ values before calling the sosDIGIInitDriver function.

The system will support up to 5 digital devices at the same time.
��Return Value
�The sosDIGIDetectFindFirst function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			A sound device was located

_ERR_DRIVER_NOT_LOADED		The sosDIGIDetectInit function
				was not called to init the system.

_ERR_INVALID_POINTER		A NULL pointer was passed

_ERR_NO_DRIVER_FOUND		A sound device was not located in
				the system. This condition also
				indicates that the internal
				speaker was located.

��See Also�sosDIGIDetectFindNext, sosDIGIDetectFindHardware��
�sosDIGIDetectFindHardware

�sosDIGIDetectFindHardware
��Description

�This function will search for a specific sound device.

#include "sos.h"

W32 	sosDIGIDetectFindHardware(W32 wDeviceID,
					PSOSDIGIDRIVER pDriver);

wDeviceID	Device ID to search for. A list of ID codes are provided in the appendix section of this manual and in the sos.h header file..

pDriver		Pointer to an _SOS_DIGI_DRIVER structure.
��Remarks
�The sosDIGIDetectFindHardware function may be used to test if a specific sound device is present in the system.

In order to retrieve the actual values of the cards Port, DMA and IRQ settings you must call the sosDIGIDetectGetSettings function.
��Return Value
�The sosDIGIDetectFindHardware function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Hardware was located

_ERR_INVALID_POINTER		A NULL pointer was passed

_ERR_DRIVER_NOT_LOCATED	The requested driver ID was not
				located by the detection system.

_ERR_INVALID_DRIVER		The driver ID was not valid

_ERR_DETECTION_FAILURE		The system was unable to locate
				the requested driver.
��See Also�sosDIGIDetectFindFirst, sosDIGIDetectFindNext, sosDIGIDetectInit��

�sosDIGIDetectFindNext

�sosDIGIDetectFindNext
��Description

�This function finds the next sound device installed in the system.

#include "sos.h"

W32	sosDIGIDetectFindNext(PSOSDIGIDRIVER pDriver);

pDriver		Pointer to an _SOS_DIGI_DRIVER type structure.
��Remarks
�The sosDIGIDetectFindNext function may only be called after calling the sosDIGIDetectInit and sosDIGIDetectFindFirst functions.

Note that this function will not find multiple occurances of the same sound device. ie. two Sound Blasters in one machine

In order to obtain the Port, DMA and IRQ settings of a device you must call the sosDIGIDetectGetSettings function.

To use more than one digital sound device in the system you must explicitly define the Port, DMA, and IRQ values before calling the sosDIGIInitDriver function.

The system will support up to 5 digital devices at the same time.
��Return Value
�The sosDIGIDetectFindNext function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			A sound device was located

_ERR_DRIVER_NOT_LOADED		The sosDIGIDetectInit function
				was not called to init the system.

_ERR_INVALID_POINTER		A NULL pointer was passed

_ERR_NO_DRIVER_FOUND		A sound device was not located in
				the system. This condition also
				indicates that the internal
				speaker was located.
��See Also�sosDIGIDetectFindHardware, sosDIGIDetectFindFirst��
�sosDIGIDetectInit

�sosDIGIDetectInit
��Description

�Initializes the sound card detection system.

#include "sos.h"

W32 	sosDIGIDetectInit(PSTR szPath);

szPath	Path to the HMIDET.386 and HMIDRV.386 driver files. Passing a NULL in this parameter specifies the current path.

��Remarks
�The sosDIGIDetectInit function must be called before any other detection functions.
��Return Value
�The sosDIGIDetectInit function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was initialized

_ERR_FAIL_ON_FILE_OPEN		The system could not locate the
				.DRV or .386 detection files.

_ERR_DETECT_INITIALIZED	The system was previously
				initialized

_ERR_MEMORY_FAIL		The system could not allocate
				memory for the detection system

��See Also�sosDIGIInitSystem, sosDIGIDetectUnInit��
�sosDIGIDetectUnInit

�sosDIGIDetectUnInit
��Description

�Uninitializes the sound card detection system.

#include "sos.h"

W32 	sosDIGIDetectUnInit(VOID);

��Remarks
�The sosDIGIDetectUnInit function must be called before loading a sound driver into memory with the sosDIGIInitDriver function.

This function frees all memory allocated by the detection system.
��Return Value
�The sosDIGIDetectUnInit function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was uninitialized

��See Also�sosDIGIUnInitSystem, sosDIGIDetectInit��
�sosDIGIDetectVerifySettings

�sosDIGIDetectVerifySettings
��Description

�Verifies the settings of a sound device with those passed in by the application.

#include "sos.h"

W32	 sosDIGIDetectVerifySettings(PSOSDIGIDRIVER pDriver);

pDriver	Pointer to an _SOS_DIGI_DRIVER type structure. The hardware settings are verified against the settings stored in the _SOS_HARDWARE structure inside the digital driver structure.
��Remarks
�The sosDIGIDetectVerifySettings function can be used to check that the settings passed in by the application are valid. This function should be used if the application queries the user for device settings.

Note that you must fill in the wPort, wDMA, and wIRQ elements in the hardware structure prior to calling this function.
��Return Value
�The sosDIGIDetectVerifySettings function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The device settings were correct
_ERR_INVALID_PORT		Port is incorrect
_ERR_INVALID_IRQ		IRQ is incorrect
_ERR_INVALID_DMA		DMA channels is incorrect

��See Also�sosDIGIDetectGetSettings��

�sosDIGIGetBytesProcessed

�sosDIGIGetBytesProcessed
��Description

�Retrieves the total number of bytes that have been processed since a sample was started.

#include "sos.h"

W32 	sosDIGIGetBytesProcessed(HANDLE hDriver, HANDLEW32 hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetBytesProcessed function may be used to determine the total number of bytes that have been processed by the system since a specific sample was started.

This internal count is only reset by the sosDIGIStartSample function.

Dividing the count by the sample rate will give you the current position in seconds since the sample was started.
��Return Value
�The sosDIGIGetBytesProcessed function returns the total bytes processed by the internal system since the sample was started.

��See Also�sosDIGIStartSample��
�sosDIGIGetDMAPosition

�sosDIGIGetDMAPosition
��Description

�Retrieves the current position of the DMA controller of an initialized sound device.

#include "sos.h"

W32 	sosDIGIGetDMAPosition(HANDLE hDriver);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.
��Remarks
�The sosDIGIGetDMAPosition function may be used to determine the current location of the DMA controller of a sound device. Note that this function will return a psuedo controller position of the device if it is not a DMA device.

The controller position reflects the position the DMA controller was positioned at the last timer tick. The controller value counts up from 0 to the size of the DMA buffer.
��Return Value
�The sosDIGIGetDMAPosition function returns the current location of the DMA controller.

��See Also���

�sosDIGIGetLoopCount

�sosDIGIGetLoopCount
��Description

�Retrieves the current loop count for a sample.

#include "sos.h"

W32 	sosDIGIGetLoopCount(HANDLE hDriver,
				HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetLoopCount function may be used to determine the total number of loops that remain to be processed by the system since a specific sample was started.

This internal count is only reset by the sosDIGIStartSample function.
��Return Value
�The sosDIGIGetLoopCount function returns the total number of loops remaining for the sample.
��See Also�sosDIGIStartSample��
�sosDIGIGetPanLocation

�sosDIGIGetPanLocation
��Description

�Retrieves the current pan location of a sample.

#include "sos.h"

W32 	sosDIGIGetPanLocation(HANDLE hDriver,
				 HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetPanLocation function may be used to determine the current pan location of a sample.

Note that panning only works when using a stereo driver and has no effect on a mono output device.

��Return Value
�The sosDIGIGetPanLocation function returns the current pan location of the sample. The return value will be in the following range:

	Left		Center		Right

	0x0000		0x8000		0xffff
��See Also�sosDIGISetPanLocation��
�sosDIGIGetPanSpeed

�sosDIGIGetPanSpeed
��Description

�Retrieves the current pan speed of a sample.

#include "sos.h"

W32 	sosDIGIGetPanSpeed(HANDLE hDriver, HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetPanSpeed function may be used to determine the current panning speed of a sample.

Note that panning only works when using a stereo driver and has no effect on a mono output device.
��Return Value
�The sosDIGIGetPanSpeed function returns the current panning speed of the sample. The return value will be in the following range:

	0x0000 - 0x7fff	Panning left to right.
	0x8000 - 0xffff	Panning right to left.

��See Also�sosDIGISetPanSpeed��
�sosDIGIGetSampleRate

�sosDIGIGetSampleRate
��Description

�Retrieves the current sample rate of a sample.

#include "sos.h"

W32 	sosDIGIGetSampleRate(HANDLE hDriver,
				 HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetSampleRate function is used to determine the current rate of a sample. The rate is expressed in samples per second, not bytes per second.
��Return Value
�The sosDIGIGetSampleRate function returns the current rate of the sample.

��See Also�sosDIGISetSampleRate��
�sosDIGIGetSampleHandle

�sosDIGIGetSampleHandle
��Description

�Retrieves the internal handle of a sample.

#include "sos.h"

W32 	sosDIGIGetSampleHandle(HANDLE hDriver,
				 HANDLEW32 wSampleID);

hDriver	Handle to sound driver returned by the sosDIGIInitDriver function.

wSampleID	ID of the sample as specified in the wID member of 	the _SOS_SAMPLE structure.
��Remarks
�The sosDIGIGetSampleHandle function may be used to determine the internal handle of a sample.

The sample handle is required by several functions in the system. The handle is initially returned by the sosDIGIStartSample function.
��Return Value
�The sosDIGIGetSampleHandle function returns the internal handle of the sample.

��See Also�sosDIGIGetSampleID, sosDIGIStartSample��

�sosDIGIGetSampleID

�sosDIGIGetSampleID
��Description

�Retrieves the current ID of a sample.

#include "sos.h"

W32	 sosDIGIGetSampleID(HANDLE hDriver, HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetSampleID function may be used to determine the ID of a sample.

The sample ID is not used by the system and may be used freely by the application program for identifying the sample.
��Return Value
�The sosDIGIGetSampleID function returns the current ID of the sample.

��See Also�sosDIGIGetSampleHandle��

�sosDIGIGetSampleVolume

�sosDIGIGetSampleVolume
��Description

�Retrieves the current volume of a sample.

#include "sos.h"

W32 	sosDIGIGetSampleVolume(HANDLE hDriver,
				 HANDLE hSample);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.
��Remarks
�The sosDIGIGetSampleVolume function may be used to determine the current volume of a sample.
��Return Value
�The sosDIGIGetSampleVolume function returns the current volume of the sample. The volume will be in the following range:

		No Volume		Full Volume

		 0x0000			 0x7fff

Note that the volume is a 32 bit value representing the left and right channel volumes. The upper 16 bits represent the right volume and the lower 16 bits represent the left volume.
��See Also�sosDIGISetSampleVolume
��Example�// volume variabes
W32 	wLeft;
W32 	wRight;
W32	wVolume;

// fetch volume
wVolume	=	sosDIGIGetSampleVolume(hDriver, hSample);

// separate volumes
wLeft	=	wVolume & 0x00007fff;
wRight	=	(wVolume >> 16) & 0x00007fff;

��
�sosDIGIInitDriver

�sosDIGIInitDriver
��Description

�Loads a sound card specific driver from disk and prepares it for use.

#include "sos.h"

W32 	sosDIGIInitDriver(PSOSDIGIDRIVER pDriver,
			 HANDLE * hDriver);

pDriver		Pointer to an _SOS_DIGI_DRIVER type structure.

hDriver	Pointer to handle to be returned by the function. This handle uniquely identifies a specific instance of a sound driver and will be passed to all functions that control the processing of sound samples.
		
��Remarks
�The sosDIGIInitDriver function must be called before any digital audio processing may be started. This function only needs to be called once at the beginning of your application to load the sound driver you wish to use.

This function may only be called after calling the sosDIGIInitSystem function.

��Return Value
�The sosDIGIInitDriver function returns one of the following pre-defined errror codes:

_ERR_NO_ERROR		The driver was properly loaded and
			initialized

_ERR_NO_HANDLES	No available driver handles

_ERR_MEMORY_FAIL	The system was unable to allocate the
			required memory
��See Also�sosDIGIDetectFindFirst, sosDIGIDetectFindNext, sosDIGIDetectFindHardware��

�sosDIGIInitSystem

�sosDIGIInitSystem
��Description

�Initializes the digital section of the Sound Operating System.

#include "sos.h"

W32 	sosDIGIInitSystem(PSTR szPath, W32 wDebugFlags);

szPath	Path for driver files. Passing a _NULL value in this variable indicates that the sound driver files are located in the current directory.

wDebugFlags	The debug flags are reserved for future use by the system, all passed values are ignored.

		��Remarks
�The sosDIGIInitSystem function must be called before any digital audio processing may be started. This function only needs to be called once at the beginning of your application.
��Return Value
�The sosDIGIInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was initialized

A descriptive error string may be acquired by calling the sosGetErrorString function described later in this manual.
��See Also�sosDIGIUnInitSystem, sosMIDIInitSystem, sosTIMERInitSystem��

�sosDIGISampleDone

�sosDIGISampleDone
��Description

�Determines if a sound sample is done processing.

#include "sos.h"

BOOL	sosDIGISampleDone(HANDLE hDriver , HANDLE hSample);

hDriver 	Handle to sound driver returned by the sosDIGIInitDriver function..

hSample	Handle to the sample. This is the handle returned by the sosDIGIStartSample function.
��Remarks
�The sosDIGISampleDone function determines if a sample is still being processed by the internal digital mixer. Note that on playback the function will determine if a sample is still able to be heard by the listener.

This function may be used to synchronize graphics and sound output.
��Return Value
�The sosDIGISampleDone function returns one of the following pre-defined error codes:

_TRUE				The sample is done playing

_FALSE				The sample is still playing
��See Also�sosDIGIStartSample, sosDIGIStopSample���sosDIGISamplesPlaying

�sosDIGISamplesPlaying
��Description

�Retrieves the number of samples currently being processed by the digital system.

#include "sos.h"

W32	sosDIGISamplesPlaying(HANDLE hDriver);

hDriver	Handle to sound driver. This handle is returned by the sosDIGIInitDriver function.
��Remarks
�The sosDIGISamplesPlaying function may be used to determine if any digital samples are currently being processed.
��Return Value
�The sosDIGISamplesPlaying function returns the number of data samples that are currently being processed.
��See Also�sosDIGIStartSample, sosDIGIStopSample���sosDIGISetMasterVolume

�sosDIGISetMasterVolume
��Description

�Sets the master volume for the entire mix of digital samples.

#include "sos.h"

W32	sosSetMasterVolume(HANDLE hDriver, W32 wVolume);

hDriver		Handle to sound driver.

wVolume 	Volume for all digital tracks. Zero (0) is no volume and
		0x7fff is full volume.
��Remarks
�The sosDIGISetMasterVolume function allows you to set the volume of the entire mix.

This is useful for fading music and sound effects in and out when starting and stopping on screen action.
��Return Value
�The sosDIGISetMasterVolume function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Volume was adjusted to new level
��See Also�sosDIGISetSampleVolume���sosDIGISetPanLocation

�sosDIGISetPanLocation
��Description

�Sets the current pan location of a sample.

#include "sos.h"

W32	sosDIGISetPanLocation(HANDLE hDriver, HANDLE hSample,
				 W32 wLocation);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.

wLocation	New pan location. The location must be in the following
		range:

			Left		Center		Right

			0x0000		0x8000		0xffff

Note that there are several predefined equates that represent the left, center and right positions.

_PAN_LEFT		extreme left
_PAN_CENTER		center
_PAN_RIGHT		extreme right
��Remarks
�The sosDIGISetPanLocation function may be used to set the current pan location of a sample.

Note that panning only works when using a stereo driver and has no effect on a mono output device.
��Return Value
�The sosDIGISetPanLocation function returns the previous pan location of the sample. The return value will be in the following range:

	Left		Center		Right

	0x0000		0x8000		0xffff
��See Also�sosDIGIGetPanLocation��
� sosDIGISetPanSpeed

�sosDIGISetPanSpeed
��Description

�Sets the current pan speed of a sample.

#include "sos.h"

W32	sosDIGISetPanSpeed(HANDLE hDriver,
			 HANDLE hSample,W32 wSpeed);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.

wSpeed		New pan speed for the sample. The pan speed must be in
		the following range:

		0x0000 - 0x7fff	Panning left to right.
		0x8000 - 0xffff	Panning right to left.
��Remarks
�The sosDIGISetPanSpeed function may be used to set the current panning speed of a sample.

Note that panning only works when using a stereo driver and has no effect on a mono output device.
��Return Value
�The sosDIGISetPanSpeed function returns the previous panning speed of the sample. The return value will be in the following range:

	0x0000 - 0x7fff	Panning left to right.
	0x8000 - 0xffff	Panning right to left.

��See Also�sosDIGIGetPanSpeed��

�sosDIGISetSampleRate

�sosDIGISetSampleRate
��Description

�Sets the current rate, in samples per second, of a sample.

#include "sos.h"

W32	sosDIGISetSampleRate(HANDLE hDriver, HANDLE hSample,
			 	W32 wRate);

hDriver		Handle to sound driver returned by the sosDIGIInitDriver
		function.

hSample		Handle to the sample returned by the sosDIGIStartSample
		function.

wRate		New sample rate, expressed in samples per second.
��Remarks
�The sosDIGISetSampleRate function may be used to set the current rate of a sample.
��Return Value
�The sosDIGISetSampleRate function returns the previous rate of the sample.

��See Also�sosDIGIGetSampleRate��

�sosDIGISetSampleVolume

�sosDIGISetSampleVolume
��Description

�Sets the volume of a sample that is currently playing.

#include "sos.h"

W32	sosDIGISetSampleVolume(HANDLE hDriver,
				 HANDLE hSample, W32 wVolume);

hDriver	Handle to sound driver returned by the sosDIGIInitDriver function..

hSample	Handle to the sample. This handle is returned by the sosDIGIStartSample function.

wVolume	Volume for the sample left and right channels. Use the MK_VOLUME macro to create this parameter. See below for valid settings.
��Remarks
�The sosDIGISetSampleVolume function only has an effect on a sample that is currently playing.

The volume ranges are as follows:

8 and 16 Bit

The volume range is from 0 - 0x7fff, where 0x7fff is full volume and 0 is no volume.
��Return Value
�The sosDIGISetSampleVolume function returns the previous volume setting:

��See Also�sosDIGISetMasterVolume��

�sosDIGIStartSample

�sosDIGIStartSample
��Description

�Starts a sample playing.

#include "sos.h"

W32	sosDIGIStartSample(HANDLE hDriver,
			 PSOSSAMPLE_SOS_SAMPLE * pSample);

hDriver	Handle to sound driver returned by the sosDIGIInitDriver function.

pSample		Pointer to the sample structure to start.
��Remarks
�The sosDIGIStartSample function starts a digital sample processing. This function is used for both recording and playback. Be sure to fill in the _SOS_SAMPLE structure prior to calling this function.

��Return Value
�The sosDIGIStartSample function returns the handle to the sample if the sound sample was started.

The sosDIGIStartSample function returns the following pre-defined error code if 32 samples are currently playing:

_ERR_NO_SLOTS			No channels are available
��See Also�sosDIGISamplesPlaying, sosDIGIStopSample��

�sosDIGIStopSample

�sosDIGIStopSample
��Description

�Stops a sample that is currently playing.

#include "sos.h"

BOOL	sosDIGIStopSample(HANDLE hDriver, HANDLE hSample);

hDriver	Handle to sound driver returned by the sosDIGIInitDriver function.

hSample	Handle to the sample to stop. This handle is the handle returned by the sosDIGIStartSample function.
��Remarks
�The sosDIGIStopSample function stops a sample that is currently being processed.
��Return Value
�The sosDIGIStopSample function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Sample was stopped

_ERR_INVALID_HANDLE		Driver handle was invalid
��See Also�sosDIGIStartSample, sosDIGISamplesPlaying���sosDIGIUnInitDriver

�sosDIGIUnInitDriver
��Description

�Uninitializes a sound card specific driver and optionally removes it from memory.

#include "sos.h"

W32	sosDIGIUnInitDriver(HANDLE hDriver , BOOLW32 wbFreeBuffer,
			 BOOLW32 bwFreeDriver);

hDriver		Handle of driver to uninitialize.

WbFreeBuffer	Flag to indicate whether the system should free the DMA buffer.

WbFreeDriver	Flag to indicate whether the system should free the driver and timer memory.
��Remarks
�The sosDIGIUnInitDriver function should be called before terminating an application.
��Return Value
�The sosDIGIUnInitDriver function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was unninitialized.

_ERR_DRIVER_NOT_LOADED		The driver handle was invalid.
��See Also�sosDIGIInitDriver, sosDIGIInitSystem��
�sosDIGIUnInitSystem
	
�sosDIGIUnInitSystem
��Description

�Uninitializes the digital system.

#include "sos.h"

W32	sosDIGIUnInitSystem(VOID);

��Remarks
�The sosDIGIUnInitSystem function should be called before you exit your application.
��Return Value
�The sosDIGIUnInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was uninitialized

��See Also�sosDIGIInitSystem, sosDIGIInitDriver, sosDIGIUnInitDriver���sosGetErrorString

�sosGetErrorString
��Description

�Returns the error string for an error code returned by an S.O.S. function.

#include "sos.h"

PSTR 	sosGetErrorString(W32 wError);

wError		Error code returned by function.
��Remarks
�The sosGetErrorString function is used to retrieve a descriptive error string derived from an error code return by an SOS function.

Note that all of the error string data is static to the sosGetErrorString module and will not be linked in if you do not call this function.

��Return Value
�The sosGetErrorString function returns a pointer to the error string.

��See Also���

�sosMIDIBranchToSongID

�sosMIDIBranchToSongID
��Description

�Branches to a pre-defined global branch ID in a MIDI song.

#include "sosm.h"

W32	sosMIDIBranchToSongID(HANDLE hSong, BYTE bBranchID);

hSong		Handle to MIDI song returned by sosMIDIStartSong.

bBranchID	Global branch ID in a MIDI song as defined by musician.
��Remarks
�The sosMIDIBranchToSongID function is used to branch to a branch point within a MIDI song that is currently playing.

Refer to the section on "MIDI Looping and Branching" later in this manual for information on imbedding branch controllers in a MIDI song.
��Return Value
�The sosMIDIBranchToSongID function returns one of the following pre-defined error codes.

_ERR_NO_ERROR			The branch was activated

_ERR_INVALID_HANDLE		The song handle was invalid

��See Also���
�sosMIDIBranchToTrackID

�sosMIDIBranchToTrackID
��Description

�Branches to a local branch ID on a single track of a MIDI song.

#include "sosm.h"

W32	sosMIDIBranchToTrackID(HANDLE hSong, W32BYTE wbTrack,
				 BYTE bBranchID);

hSong		Handle to MIDI song return by sosMIDIStartSong.

WbTrack		Track on which branch ID is located.

bBranchID	Local branch ID in a MIDI track as defined by musician.
��Remarks
�The sosMIDIBranchToTrackID function is used to branch to a local branch point contained within a MIDI track of a song that is currently playing.

Refer to the section on "MIDI Looping and Branching" later in this manual for information on placing local branch controllers in a MIDI track.
��Return Value
�The sosMIDIBranchToTrackID function returns one of the following pre-defined error codes.

_ERR_NO_ERROR			The branch was activated

_ERR_INVALID_HANDLE		The song handle was invalid

��See Also���

� sosMIDIFadeSong

�sosMIDIFadeSong
��Description

�Controls automatic fading of a songs volume.

#include "sosm.h"

W32 	sosMIDIFadeSong(HANDLE hSong, W32 wDirection,
			 W32 wPeriod, W32 wStartVolume,
			 W32 wEndVolume, W32 wDivisor);

hSong		Song handle returned by sosMIDIInitSong.

wDirection	Direction for fade:

		_SOS_MIDI_FADE_IN		Fade song in
		_SOS_MIDI_FADE_OUT 		Fade song out
		_SOS_MIDI_FADE_OUT_STOP	Fade song out & stop

wPeriod		Time to fade song over, in milliseconds. ie. 100 equals 1
		second.

wStartVolume	Volume at which to start the fade (0 - 127).

wEndVolume	Volume at which to end the fade (0 - 127).

wDivisor	The MIDI system normally processes the data stream at the default rate of 120 times per second. Each timer tick, the system determines if it needs to send out any data, if the system is in the middle of a volume fade, it will attempt to send out the volume change information at this rate. Sending data out at 120 times per second on a MPU-401 type device will significantly slow down the system. By setting the divisor to something like 10, or higher, you reduce the amount of data sent but still achieve the desired effect.

	You may wish to adjust this amount to achieve the desired granularity of the song fade. The divisor must not be zero.
��Remarks
�The sosMIDIFadeSong function is used to fade MIDI songs in or out.
��Return Value
�The sosMIDIFadeSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The song fade was initiated

��See Also���
�sosMIDIGetSongLocation

�sosMIDIGetSongLocation
��Description

�Retrieves the current location in bars, beats, and ticks of a MIDI song that is playing.

#include "sosm.h"

W32	sosMIDIGetSongLocation(HANDLE hSong, W32 * pBar,
				W32 * pBeat, W32 * pTick) ;

hSong		Handle of the song returned by sosMIDIInitSong.

pBar		Pointer to variable in which to store bar count.

pBeat		Pointer to variable in which to store beat count.

pTick		Pointer to variable in which to store tick count.
��Remarks
�The sosMIDIGetSongLocation function may be called to determine the current location in a MIDI song. This function is provided primarily for creating utility software that may require this information.
��Return Value
�The sosMIDIGetSongLocation function returns one of the following pre-defined error codes:

_ERR_NO_ERROR		Song location returned correctly
_ERR_INVALID_HANDLE	Song handle was invalid

��See Also���

�sosMIDIGetTrackLocation

�sosMIDIGetTrackLocation
��Description

�Retrieves the current location in bars, beats, and ticks of a track inside of a MIDI song that is playing.

#include "sosm.h"

W32	sosMIDIGetTrackLocation(HANDLE hSong, W32 wTrack,
			W32 * pBar, W32 * pBeat, W32 * pTick) ;

hSong		Handle of the song returned by sosMIDIInitSong.

wTrack		Track of the MIDI song.

pBar		Pointer to variable in which to store bar count.

pBeat		Pointer to variable in which to store beat count.

pTick		Pointer to variable in which to store tick count.
��Remarks
�The sosMIDIGetTrackLocation function may be called to determine the current location in a specific MIDI track. This function is provided primarily for creating utility software that may require this information.
��Return Value
�The sosMIDIGetTrackLocation function returns one of the following pre-defined error codes:

_ERR_NO_ERROR		Song location returned correctly
_ERR_INVALID_HANDLE	Song handle was invalid
��See Also���

�sosMIDIGetSongNotesOn

�sosMIDIGetSongNotesOn
��Description

�Retrieves the number of notes that are currently active in a MIDI song.

#include "sosm.h"

W32	sosMIDIGetSongNotesOn(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDIGetSongNotesOn function may be called to determine the number of actual notes that are playing in a MIDI song. This function is provided primarily for creating utility software that may require this information.
��Return Value
�The sosMIDIGetSongNotesOn function returns the number of notes that are currently playing.

��See Also���

�sosMIDIInitDriver

�sosMIDIInitDriver
��Description

�Initializes a MIDI driver.

#include "sosm.h"

W32	sosMIDIInitDriver(PSOSMIDIDRIVER pDriver,
			 HANDLE * hDriver);

pDriver		Pointer to a _SOS_MIDI_DRIVER structure type.

hDriver		Pointer to handle of MIDI driver.
��Remarks
�The sosMIDIInitDriver function must be called for each type of MIDI driver that will be used during the playback of a song.

Note that the driver types _MIDI_DIGI and _MIDI_CALLBACK do not use loadable drivers, these drivers are built into the system.

A list of available driver types are listed below:

_MIDI_FM			FM synthesis (OPL2)
_MIDI_OPL2			FM synthesis (OPL2)
_MIDI_OPL3			FM synthesis (OPL3, 2 operator)
_MIDI_MT_32			Roland MT-32 MIDI device
_MIDI_MPU_401			General MIDI MPU-401 interface
_MIDI_SOUND_MASTER_II		Sound Master II UART MIDI
_MIDI_AWE32			Sound Blaster AWE32 MIDI device
_MIDI_DIGI			Digital MIDI device
_MIDI_CALLBACK			Callback MIDI device
_MIDI_WAVE_TABLE_SYNTH		Software wave table synthesizer
_MIDI_GUS			Gravis UltraSound MIDI
��Return Value
�The sosMIDIInitDriver function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The driver was initialized

_ERR_NO_HANDLES		No more driver handles were free

_ERR_DRIVER_LOADED		The driver was previously loaded

_ERR_INVALID_ID		An invalid driver ID was passed

_ERR_FAIL_ON_FILE_OPEN		The .DRV or .386 files were not
				located

_ERR_MEMORY_FAIL		The system was unable to allocate
				memory for the driver
��See Also�sosMIDIUnInitDriver��
�sosMIDIInitSong

�sosMIDIInitSong
��Description

�Initializes a song for playback using the MIDI system.

#include "sosm.h"

W32 	sosMIDIInitSong(PSOSMIDISONG pSong,
			 HANDLE * hSong);

pSong	Pointer to an _SOS_MIDI_SONG type structure. The pointer to the song (pSong) must be initialized prior to calling this function to start the song.

hSong	Pointer to the song handle. The handle will be used to further control the song after it is started.
��Remarks
�The sosMIDIInitSong function must be called for each song that will be used.

The song must be loaded completely into memory to be processed by the MIDI system. In addition, if you are using a virtual memory system, make sure that the song memory is locked to avoid and swapping to disk during playback.
��Return Value
�The sosMIDIInitSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song was properly initialized

_ERR_NO_HANDLES		The system could not locate a
				free song handle

_ERR_INVALID_DATA		The song was not an .HMI or .HMP
				format song
��See Also�sosMIDIUnInitSong, sosMIDIStartSong, sosMIDIStopSong��

�sosMIDIInitSystem

�sosMIDIInitSystem
��Description

�Initializes the MIDI playback system.

#include "sosm.h"

W32	sosMIDIInitSystem(PSTR szPath,W32 wDebugFlags);

szPath	Path to the .DRV or .386 driver files. Passing a NULL value indicates the current path.

wDebugFlags	Reserved for future use.
��Remarks
�The sosMIDIInitSystem function must be called before any calling any other MIDI related functions.
��Return Value
�The sosMIDIInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was initialized
��See Also�sosMIDIUnInitSystem, sosMIDIInitDriver, sosMIDIUnInitDriver��
�sosMIDIMT32SetInsData

�sosMIDIMT32SetInsData
��Description

�Sets up instrument data for a MT32 type device.

#include "sosm.h"

W32	sosMIDIMT32SetInsData(HANDLE hDriver, LPSTR lpInsData,
 				 W32 wDataSize) ;

hDriver		Handle of the driver returned by sosMIDIInitDriver.

lpInsData	Pointer to instrument data for the driver.

wDataSize	Size of passed data.
��Remarks
�The sosMIDIMT32SetInsData must be called before a song is played if you wish to use your own patch information.

The patch file format is simply a system exclusive dump.
��Return Value
�The sosMIDIMT32SetInsData function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Data was received correctly
��See Also�sosMIDISetInsData���sosMIDIMuteSong

�sosMIDIMuteSong
��Description

�Mutes a song that is currently playing using the MIDI system. The song continues playing but is not audible.

#include "sosm.h"

W32	sosMIDIMuteSong(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDIMuteSong function may be called to temporarily mute a song that is currently playing.
��Return Value
�The sosMIDIMuteSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song was muted

��See Also�sosMIDIUnMuteSong��

�sosMIDIPauseSong

�sosMIDIPauseSong
��Description

�Pauses a song that is currently playing.

#include "sosm.h"

W32	sosMIDIPauseSong(HANDLE hSong, W32 wMute) ;

hSong		Handle of the song returned by sosMIDIInitSong.

wMute		Flag to turn volume and all notes off when pausing song.

		_TRUE		Turn volume off when song is paused.
		_FALSE		Leave volume and notes on during pause.
��Remarks
�The sosMIDIPauseSong function may be called to temporarily pause a song that is currently playing.
��Return Value
�The sosMIDIPauseSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song was paused

��See Also�sosMIDIResumeSong��

�sosMIDIRegisterBranchFunction

�sosMIDIRegisterBranchFunction
��Description

�Registers a function to call when a local or global branch controller is encountered in a MIDI song.

#include "sosm.h"

W32	sosMIDIRegisterBranchFunction(HANDLE hSong,
		W32 (* pfnFunction)(HANDLE, BYTE, BYTE)) ;

hSong		Handle of the song returned by sosMIDIInitSong.

pfnFunction	Pointer to the function to call when a branch is encountered.

See below for an example of the branch call back function.

��Remarks
�The sosMIDIRegisterBranchFunction function can re-register different functions as a song progresses.

The function that is called when a branch is encountered may conditionally have the song continue without executing the branch. This allows music to interact with the application.
��Return Value
�The sosMIDIRegisterBranchFunction function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Branch was registered

��See Also�sosMIDIRegisterLoopFunction, sosMIDIRegisterTriggerFunction
��Example�// register branch point call back function to be called when a
// branch controller is reached.
sosMIDIRegisterBranchFunction(hSong, hmiBranchCallback);
.
.
.
// example call back function called when a branch controller
// is reached.
W32 hmiBranchCallback(HANDLE hSong, BYTE bTrack, BYTE bID)
{
	// hSong	song handle
	// bTrack	track branch occured on
	// bID		ID value of branch

	// return _TRUE to branch and _FALSE to continue
	// without branching.
	return(_TRUE);
}

�����

�sosMIDIRegisterLoopFunction

�sosMIDIRegisterLoopFunction
��Description

�Registers a function to call when a loop end controller is encountered in a MIDI song.

#include "sosm.h"

W32	sosMIDIRegisterLoopFunction(HANDLE hSong,
		W32 (* pfnFunction)(HANDLE, BYTE, BYTE)) ;

hSong		Handle of the song returned by sosMIDIInitSong.

pfnFunction	Pointer to the function to call when a loop end controller is
		encountered.

See below for an example of the loop end call back function.
��Remarks
�The sosMIDIRegisterLoopFunction function can re-register a loop end function as the song progresses.

Note that the callback function happens under interrupt and the amount of code executed inside a callback function should be kept at a minimum.

��Return Value
�The sosMIDIRegisterLoopFunction function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Function was registered

��See Also�sosMIDIRegisterBranchFunction, sosMIDIRegisterTriggerFunction
��Example�// register loop call back function to be called when a
// loop end controller is reached.
sosMIDIRegisterLoopFunction(hSong, hmiLoopCallback);
.
.
.
// example call back function called when a loop end controller
// is reached.
W32 hmiLoopCallback(HANDLE hSong, BYTE bTrack, BYTE bID)
{
	// hSong	song handle
	// bTrack	track loop occured on
	// bID		ID value of loop

	// return _TRUE to loop and _FALSE to end loop
	return(_TRUE);
}

�����
�sosMIDIRegisterTriggerFunction

�sosMIDIRegisterTriggerFunction
��Description

�Registers a function to call when a callback trigger controller is encountered in a MIDI song.

#include "sosm.h"

W32 	sosMIDIRegisterTriggerFunction(HANDLE hSong, BYTE bID,
	W32 (* pfnFunction)(HANDLE, BYTE, BYTE)) ;

hSong		Handle of the song returned by sosMIDIInitSong.

bID		ID value for which to register the function.

pfnFunction	Pointer to the function to call when a callback trigger
		controller is encountered.

See below for an example of the trigger call back function.
��Remarks
�The sosMIDIRegisterTriggerFunction function can re-register a trigger function as the song progresses.

Note that the callback function happens under interrupt and the amount of code executed inside a callback function should be kept at a minimum.
��Return Value
�The sosMIDIRegisterTriggerFunction function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Function was registered

��See Also�sosMIDIRegisterBranchFunction, sosMIDIRegisterLoopFunction
��Example�// register trigger call back function to be called when a
// trigger controller is reached.
sosMIDIRegisterTriggerFunction(hSong, hmiTriggerCallback);
.
.
.
// example call back function called when a trigger controller
// is reached.
W32 hmiTriggerCallback(HANDLE hSong, BYTE bTrack, BYTE bID)
{
	// hSong	song handle
	// bTrack	track trigger occured on
	// bID		ID value of trigger
	
}

��

�sosMIDIResetDriver

�sosMIDIResetDriver
��Description

�Resets a driver that has been previously loaded.

#include "sosm.h"

W32	sosMIDIResetDriver(HANDLE hDriver) ;

hDriver		Handle of the driver returned by sosMIDIInitDriver.

��Remarks
�The sosMIDIResetDriver function may be called to reset a previously loaded driver. Typically the application will not need to reset the driver after it has been initialized.
��Return Value
�The sosMIDIResetDriver function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Driver was reset correctly

��See Also�sosMIDIInitDriver, sosMIDIUnInitDriver��

�sosMIDIResetSong

�sosMIDIResetSong
��Description

�Resets a song for playback using the MIDI system.

#include "sosm.h"

W32	sosMIDIResetSong(HANDLE hSong);

hSong		Handle returned by sosMIDIInitSong.
��Remarks
�The sosMIDIResetSong function is identical to the sosMIDIInitSong function except that a new handle is not allocated.

Note that if a song finishes or is stopped by the sosMIDIStopSong function the sosMIDIResetSong function is automatically called so the song may be restarted by the sosMIDIStartSong function.
��Return Value
�The sosMIDIResetSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The song was properly reset to its
				original state

��See Also�sosMIDIInitSong, sosMIDIStartSong, sosMIDIStopSong��

�sosMIDIResumeSong

�sosMIDIResumeSong
��Description

�Resumes the playback of a MIDI song that was previously paused with the sosMIDIPauseSong function.

#include "sosm.h"

W32 	sosMIDIResumeSong(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDIResumeSong function may be called to resume a song that was previously paused by the function sosMIDIPauseSong.
��Return Value
�The sosMIDIResumeSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The song playback was resumed
��See Also�sosMIDIPauseSong��
�sosMIDISendMIDIData

�sosMIDISendMIDIData
��Description

�Sends MIDI data directly to a device.

#include "sosm.h"

W32	sosMIDISendMIDIData(HANDLE hDriver, LPSTR lpData,
			 DWORDW32 dwSize);

hDriver		Handle returned by sosMIDIInitDriver.

lpData		A FAR pointer to MIDI data.

wdSize		Length in bytes of the MIDI data sequence.
��Remarks
�The sosMIDISendMIDIData function is used to send MIDI data directly to a driver. This function may be used in applications that handle sequencing tasks, or to fire off sound effects that are contained in a digital patch file.

Note that you can not simply send a full MIDI stream to this funciton, it must be parsed into event packets such as note on, note off, program change, etc... prior to calling this function.
��Return Value
�The sosMIDISendMIDIData function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The data was sent to the device

��See Also���
� sosMIDISetInsData

�sosMIDISetInsData
��Description

�Sets up instrument patch data for a MIDI device.

#include "sosm.h"

W32	sosMIDISetInsData(HANDLE hDriver, PSTR pInsData,
 			 W32 wDataSize) ;

hDriver		Handle of the driver returned by sosMIDIInitDriver.

pInsData	Pointer to instrument data for the driver.

WDataSize	Size, in bytes, of the passed data.
��Remarks
�The sosMIDISetInsData must be called before a song is played if you wish to change patch information. This function only needs to be used on OPL2/OPL3 type devices.

This function is used to pass the driver a pointer to the ADLIB format .BNK file for melodic instruments.

To use percussion instruments you must first call this function with a pointer to the melodic instruments and then call it a second time and pass it a pointer to the drum instruments.

For the Roland MT-32 device you must use the sosMIDIMT32SetInsData function to download patch information.
��Return Value
�The sosMIDISetInsData function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Data was received correctly
��See Also�sosMIDIMT32SetInsData��
�sosMIDISetMasterVolume

�sosMIDISetMasterVolume
��Description

�Sets master volume for all MIDI devices.

#include "sosm.h"

W32	sosMIDISetMasterVolume(W32 wVolume) ;

wVolume	Volume for MIDI devices.
��Remarks
�The sosMIDISetMasterVolume can be used to adjust the master volume of all MIDI devices.

The volume range is as follows:

	No Volume		Full Volume
 0		 127

��Return Value
�The sosMIDISetMasterVolume function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Volume was adjusted to new volume
��See Also���
�sosMIDISetSongVolume

�sosMIDISetSongVolume
��Description

�Sets the volume of a song that is currently playing.

#include "sosm.h"

W32	sosMIDISetSongVolume(HANDLE hSong, W32 wVolume) ;

hSong		Handle of the song returned by sosMIDIInitSong.

wVolume	Volume for the song (0 - 127).
��Remarks
�The sosMIDISetSongVolume function may be called to change the volume of a song that is currently playing.
��Return Value
�The sosMIDISetSongVolume function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song volume was set properly

��See Also�sosMIDISetMasterVolume��

�sosMIDISongAlterTempo

�sosMIDISongAlterTempo
��Description

�Alters the tempo of a MIDI song that is playing.

#include "sosm.h"

W32	sosMIDISongAlterTempo(HANDLE hSong, W32 wPercent) ;

hSong		Handle of the song returned by sosMIDIInitSong.

wPercent	Percent to alter the original base tempo by. The alteration value works as follows:
		
		Percent		Action

		100		Song plays same tempo
		50		Song plays half speed
		200		Song plays double speed

		The only invalid value is zero.
��Remarks
�The sosMIDISongAlterTempo function may be used to increase or decrease the tempo of a song as it is playing.
��Return Value
�The sosMIDISongAlterTempo function returns one of the following pre-defined error codes.

_ERR_NO_ERROR			The song tempo was altered

��See Also���

�sosMIDISongDone

�sosMIDISongDone
��Description

�Determines if a song is done playing.

#include "sosm.h"

BOOL	sosMIDISongDone(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDISongDone function may be called to determine if a song that is currently playing has finished.
��Return Value
�The sosMIDISongDone function returns one of the following values:

	_TRUE		The song has completed playback.

	_FALSE		The song is still playing.
��See Also�sosMIDIStopSong ��
� sosMIDIStartSong

�sosMIDIStartSong
��Description

�Starts a song playing using the MIDI system.

#include "sosm.h"

W32	sosMIDIStartSong(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDIStartSong function is used to start a song playing.

Note that each MIDI song uses a timer event. The timer event is released when the song is stopped by sosMIDIStopSong.
��Return Value
�The sosMIDIStartSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The song was started

_ERR_NO_HANDLES		The system could not locate any
				free timer event handles
��See Also�sosMIDIInitSong, sosMIDIStopSong��

�sosMIDIStopSong

�sosMIDIStopSong
��Description

�Stops a song that was started by sosMIDIStartSong.

#include "sosm.h"

W32	sosMIDIStopSong(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.

��Remarks
�The sosMIDIStopSong function is used to stop a song that is currently playing. When a song is stopped using this function, sosMIDIResetSong is also called so the song can be started again using the sosMIDIStartSong function.

��Return Value
�The sosMIDIStopSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The song was stopped

_ERR_INVALID_HANDLE		The song handle was invalid
��See Also�sosMIDIInitSong, sosMIDIStartSong��
�sosMIDIUnInitDriver

�sosMIDIUnInitDriver
��Description

�Uninitializes a driver from the MIDI system.

#include "sosm.h"

W32	sosMIDIUnInitDriver(HANDLE hDriver, BOOL wFreeMem);

hDriver	Handle to the driver returned by the sosMIDIInitDriver function.

wFreeMem	Flag: TRUE to free memory allocated to the driver, and FALSE to leave the driver in memory.
��Remarks
�The sosMIDIUnInitDriver function should be called for each type of MIDI driver that was used during the playback of a song and should be called before your application terminates.
��Return Value
�The sosMIDIUnInitDriver function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The driver was uninitialized

_ERR_DRIVER_NOT_LOADED		The requested driver was not
				loaded

��See Also�sosMIDIUnInitDriver��

�sosMIDIUnInitSong

�sosMIDIUnInitSong
��Description

�Uninitializes a previously initialized song.

#include "sosm.h"

W32	sosMIDIUnInitSong(HANDLE hSong);

hSong		Handle of the song returned by sosMIDIInitSong.

��Remarks
�The sosMIDIUnInitSong function should be called for each song that was used.

Note that you must call sosMIDIStopSong before calling the sosMIDIUnInitSong to make sure the time event for the song has been released.
��Return Value
�The sosMIDIUnInitSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song was uninitialized

_ERR_INVALID_HANDLE		Song handle was invalid
��See Also�sosMIDIInitSong, sosMIDIStartSong, sosMIDIStopSong��

�sosMIDIUnInitSystem

�sosMIDIUnInitSystem
��Description

�Uninitializes the MIDI playback system.

#include "sosm.h"

W32	sosMIDIUnInitSystem(VOID);

��Remarks
�The sosMIDIUnInitSystem function should be called before exiting your application.
��Return Value
�The sosMIDIUnInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The system was uninitialized
��See Also�sosMIDIInitSystem, sosMIDIInitDriver, sosMIDIUnInitDriver��

�sosMIDIUnMuteSong

�sosMIDIUnMuteSong
��Description

�UnMutes a song that is currently muted by the sosMIDIMuteSong function.

#include "sosm.h"

W32	sosMIDIUnMuteSong(HANDLE hSong) ;

hSong		Handle of the song returned by sosMIDIInitSong.
��Remarks
�The sosMIDIUnMuteSong function resumes playing a song that is currently muted.
��Return Value
�The sosMIDIUnMuteSong function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Song was unmuted

��See Also�sosMIDIMuteSong��

�sosTIMERAlterEventRate

�sosTIMERAlterEventRate
��Description

�Alters the rate of a previously installed timer event.

#include "sos.h"

W32	sosTIMERAlterEventRate(HANDLE hEvent,W32 wTimerRate);

hEvent		Handle returned by sosTIMERRegisterEvent.

wTimerRate	New rate at which to call event.
��Remarks
�The sosAlterEventRate function is used to change the rate at which a timed event occurs in your application.

The maximum number of events that can be registered at once is 16. Note that each MIDI song is registered as an event.
��Return Value
�The sosTIMERAlterEventRate function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The event rate was altered

_ERR_INVALID_HANDLE		An invalid handle was passed

��See Also�sosTIMERRegisterEventRate, sosTIMERGetEventRate��
�sosTIMERGetEventRate

�sosTIMERGetEventRate
��Description

�Returns the rate of a previously installed timer event.

#include "sos.h"

W32	sosTIMERGetEventRate(HANDLE hEvent);

hEvent		Handle returned by sosTIMERRegisterEvent.
��Remarks
�The sosTIMERGetEventRate function is used to return the rate at which a timed event occurs in your application.

The maximum number of events that can be registered at once is 16. Note that each MIDI song is registered as an event.
��Return Value
�The sosTIMERGetEventRate function returns the rate of the event.

��See Also�sosTIMERRegisterEvent, sosTIMERAlterEventRate��

�sosTIMERInitSystem

�sosTIMERInitSystem
��Description

�Initializes the timer system.

#include "sos.h"

W32	sosTIMERInitSystem (W32 wTimerRate, W32 wDebug) ;

wTimerRate	Rate at which the original handler will be called. Passing a zero (0) in this parameter will disable call through.

To call through to DOS at 18.2 timer per second, you must pass the _TIMER_DOS_RATE define in this field.

wDebug		Debug flags as described below.

��Remarks
�The sosTIMERInitSystem function initializes the system timer services.

The system provides debugging flags to tell the system not to install the actual timer handler so you may debug your application using debuggers such as Turbo Debugger and Microsoft CodeView. These debuggers have problems debugging real-timer applications that utilize their own timer services. The debug flags are defined as follows:

_SOS_DEBUG_NORMAL		Set up the system and install
				real-time timer services

_SOS_TIMER_DPMI		Hook timer using DPMI for Watcom
				with Rational DOS4GW Extender.

_SOS_DEBUG_NO_TIMER		Set up the sytsem and do not
				install real-time timer services

Note that under the Rational DOS4GW extender you can use the _SOS_TIMER_DPMI flag in combination with the _SOS_DEBUG_NORMAL flag to hook the timer interrupt using DPMI. This uses less system overhead but only traps interrupts in protected mode and ignores real mode interrupts. If your program spends a lot of time in real mode, ie. using keyboard, disk , etc. , it is suggested that you do not use this method.

The maximum number of events that can be registered at once is 16. Note that each MIDI song is registered as an event.
��Return Value
�The sosTIMERInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			System installed

��See Also�sosTIMERUnInitSystem��
�sosTIMERRegisterEvent

�sosTIMERRegisterEvent
��Description

�Registers function as a timer event.

#include "sos.h"

W32	sosTIMERRegisterEvent(W32 wTimerRate,
			 	 VOID (* pEvent)(VOID) ,
			 	 HANDLE * hEvent) ;

wTimerRate	Rate at which the event will be called. Rate is in calls per
		second.

pEvent		Pointer to the function to call.

hEvent		Pointer to a handle for the timer event.
��Remarks
�The sosTimerRegisterEvent function is used to register timed events that you wish to have occur in your application.

The maximum number of events that can be registered at once is 16. Note that each MIDI song is registered as an event.
��Return Value
�The sosTIMERRegisterEvent function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			Event was registered

_ERR_NO_HANDLES		The system could not locate a
				free timer event handle

��See Also�sosTIMERAlterEventRate��

�sosTIMERRemoveEvent

�sosTIMERRemoveEvent
��Description

�Removes a previously installed timer event.

#include "sos.h"

W32	sosTIMERRemoveEvent(HANDLE hEvent);

hEvent		Handle returned by sosTIMERRegisterEvent.
��Remarks
�The sosTIMERRemoveEvent removes a timer event from the SOS timer system.
��Return Value
�The sosTIMERRemoveEvent function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			The timer event was removed

_ERR_INVALID_HANDLE		The handle was invalid

��See Also�sosTIMERRegisterEvent, sosTIMERGetEventRate��

�sosTIMERUnInitSystem

�sosTIMERUnInitSystem
��Description

�Uninitializes the timer system.

#include "sos.h"

W32	sosTIMERUnInitSystem (W32 wTimerRate) ;

wTimerRate	Rate at which to restore the original handler. Note that this rate is not in timer per second, instead it is calculated as follows:

		wTimerRate = (1193180 / TimesPerSecond)

		Passing a zero (0) will reset the system clock to 18.2 times
		per second.

��Remarks
�The sosTIMERUnInitSystem function uninitializes the system timer services.

��Return Value
�The sosTIMERUnInitSystem function returns one of the following pre-defined error codes:

_ERR_NO_ERROR			System uninitialized

��See Also�sosTIMERInitSystem��

�Musicians Reference

The following section describes the various components that the musician will be required to use when developing music for the S.O.S. system.

When composing music for the S.O.S., the musician may take advantage of many features not found in the General MIDI implementation. These enhancements include:

(looping individual MIDI track sections
(looping entire song sections
(application controllable branch points
(MIDI call triggers
(ability to prioritize tracks

The S.O.S. does not play MIDI (.MID) files directly. The musician, or programmer, is required to convert the MIDI song to the .HMI format with the MIDI2HMI.EXE utility provided with the system. The .HMI format of MIDI song is usually smaller than the original MIDI score. In addition, the converted song contains other important information required by the internal MIDI processing system of the S.O.S.

The system provides the capability to allow the creation of songs that may contain several versions of the same song, each targeted for a different device such as OPL2/OPL3 or General MIDI. This provides the ability to have only one version of each song and the application does not have to worry about playing a different song for each type of device and permits the musician to take full advantage of each sound device.

�Description of Terms

The following terms and procedures will be used throughout the various reference sections in this manual and are described in detail below.

Branching

Branching is a very powerful feature that allows the musician to compose music that can directly interact with application events. The branching can be controlled directly from within the song or by the application program. The system features two distinct types of branching: global and local.

Branching is accomplished by using a combination of two special controllers. One controller specifies the “branch command” and the other designates a “branch target ID”.

Global branch points should be placed on track 1 of the song to allow easy tracking and debugging. When a global branch command is encountered in a song, the system moves the song playback pointer to the branch target and the song resumes playing. The application can optionally register a function that is called when a branch command is encountered and may specify whether or not to allow the branch to occur. This is called conditional branching.

Local branch points work very similar to global branch points except that they only affect the track that they are imbedded on.

Call Triggers

Call triggers allow the song to call the application program via a function that the application registers with the system. A call trigger can be used to indicate that the song has reached a certain location.

The call trigger controller is placed in the desired location of the song accompanied with a unique ID value to pass to the application. The ID value allows the application to identify where in the song the call occurred.

All call triggers are considered global to the entire song and may be placed on any track within the song. It is recommended that you place all call triggers on the same track to avoid confusion and allow easy debugging.

Channel Stealing / Channel Priority

Channel stealing is a process that assists in allowing multiple songs to play simultaneously. Every MIDI device has a certain number of notes that can play simultaneously this is referred to as polyphony. The MIDI system must allocate each song channels so that each song will have an equal chance at being heard to the best of the devices ability. This is where channel priority comes into play.

The system allows the musician to assign each track in a MIDI song a priority between 0 and 9. Zero represents the highest priority. When multiple songs are played together certain tracks such as melody tracks can be guaranteed to be audible to retain the character or feel of the song.

If several songs are competing for the sound device, tracks with lower priorities will be temporarily muted to allow tracks of higher priority to be played. When the higher priority section finishes, the lower priority track will continue playback at the correct location in the song.

Looping

Looping allows individual sections of a song or the entire song to be loop a specific number of times or looped indefinitely. The system features two distinct types of looping: global and local.

Looping is accomplished by using a combination of two special controllers. One controller specifies the “loop start” and the other specifies the “loop end”. Song loops may be nested up to 64 levels.

Global loop controllers should be placed on track 1 to avoid confusion and allow easy debugging. When a loop start controller is encountered the song position is saved and the song continues playing until is reaches the loop end controller. At this point the system decrements the loop count by one and loops back to the loop starting point. The application may optionally register a function that is called when a loop end controller is reached. The application may then decide whether or not to continue the song loop.

Local loop controllers work in the same fashion as the global controllers except that they affect only the track that they are imbedded in.

MIDI Triggered Digital Samples

The MIDI system provide the unique ability to trigger digital samples from within the MIDI song. The digital samples can be of any sample rate, bit size (8/16) and contain up to two channels (stereo). The samples pitch can not be altered using triggered samples. However, this may be accomplished using the Software Wavetable Synthesis feature of the system. The digital samples are assembled into a digital patch file (.DIG) by using the HMIWAVE.EXE utility.

The musician must map each track on which the digital samples occur to [D]igital so that the system knows to trigger digital samples instead of playing MIDI notes. Please refer to the track mapping section of the manual for a complete description of this process.

Patch Files (.BNK)

When using devices such as the OPL2/OPL3, the system requires that you supply patch files that describe the sound of each instrument. The S.O.S. uses Adlib™ format .BNK files to represent the instrument sounds on the FM (OPL2/3) devices.

The system uses two patch files, one for the melodic instruments and another for the percussion instruments. The patch files may be assembled by using the HMIINS.EXE utility provided with this system.

If you do not wish to create your own patch files an excellent General MIDI patch set is provided with the system in the MEGAPAT directory. These files were created by the music team at LoudMouth and may be licensed for a very nominal licensing fee. Please refer to the .txt files located in the directory for licensing information.

Track Mapping and Assigning Track Priorities

Track Mapping is a process that allows the musician to specify which device a particular track is created for. Typically musicians are forced to create music that works on the lowest common device such as the Sound Blaster series. This can severely limit the content of the music. To overcome this problem, the S.O.S. allows the musician to have several versions of the same song within one .MID/.HMI file. This can save considerable work and confusion for both the musician and programmer.

Track mapping is accomplished by placing a “device designator” inside the track name area. The designator must be enclosed in either brackets [] or braces { }.

Following is a list of available mapping designators.

Designator			Device

C				Callback
D				MIDI triggered digital samples
F				FM OPL2/OPL3
G				General MIDI devices
I				Internal Speaker
M				MT32
U				Gravis Ultrasound
W				Software Wavetable Synthesis

Each track may also have more that one designator. This allows certain tracks which may be applicable to more that one device not to have to be duplicated for each target device. For example a bass line may be fine for General MIDI, FM and the Gravis UltraSound. The musician would then place the [GFU] designator in the track name allowing the track to play out any of the specified devices.

In addition track priorities are assigned within the mapping context. For example, if you want a track to be targeted for General MIDI and FM and have the highest priority, the mapping would be [GF0]. The priority indicator digit ranges from 0 (highest) to 9 (lowest) and may be placed anywhere inside the mapping context.

�Software Wavetable Synthesis

The S.O.S. provides the ability to create music very similar to, but more powerful than .MOD files. This process is called Software Wavetable Synthesis. The musician may sample their own instrument sounds and play them back via a MIDI song at any rate (pitch), bit size and channel resolution. The entire song may be wavetable or only a few tracks.

The wavetable patch files are created with the HMIWAVE.EXE patch creation utility supplied with this system. Each sample can contain an attack, sustain and release section and each instrument may contain multiple samples per octave if desired.

The wavetable system will only load in the actual instruments that will be used in a song and therefor conserves on the memory required by the system.

The musician must map each track on which wavetable synthesis is desired to [W]avetable so that the system knows to trigger digital samples instead of playing MIDI notes. Please refer to the track mapping section of the manual for a complete description of this process.

�MIDI2HMI MIDI File Conversion Utility

The following section describes the MIDI2HMI.EXE utility used to convert .MID files to the .HMI format.

The MIDI2HMI.EXE utility is located in the TOOLS directory on the S.O.S. diskettes and requires the file DOS4GW.EXE to accompany the utility.

This utility will perform the following tasks:

(convert .MID files to the .HMI format
(perform wildcard batch conversions
(supply default track mappings for quick conversions
(detect most errors in a MIDI file

The utility has the following syntax:

Syntax

	MIDI2HMI < infile > < outfile > [options]

Example

MIDI2HMI test.mid test.hmi

The previous example will convert the file test.mid into the HMI format file test.hmi.

Note that if you do not supply an < outfile > filename then the file will be converted with the .HMI file extension.

The following options are available when converting files:

/AIL

Provides compatibility with the Audio Interface Library (AIL) controllers used for looping, branching and call triggers.

/DIGPAT:

Specify a digital format (.DIG) patch file that you wish to be associated with the song(s) being converted. The file is not bound to the song, however the application may retrieve the name of the patch file to ensure that the correct patch information is used.

MIDI2HMI test.mid test.hmi /DIGPAT:test.dig

/FMDPAT:

Specify an FM Drum (.BNK) patch file that you wish to be associated with the song(s) being converted. The file is not bound to the song, however the application may retrieve the name of the patch file to ensure that the correct patch information is used.

MIDI2HMI test.mid test.hmi /FMDPAT:drum.bnk

/FMPAT:

Specify an FM Melodic (.BNK) patch file that you wish to be associated with the song(s) being converted. The file is not bound to the song, however the application may retrieve the name of the patch file to ensure that the correct patch information is used.

MIDI2HMI test.mid test.hmi /FMPAT:melodic.bnk

/IN:
	Name of the input MIDI 1.0 file (wildcards exepted).

/LOG:

Designates a DOS format text file to log any errors that occurred in the conversion process. Please use this option if you have problems converting a song and have it available when calling for technical support.

/MAP:

Indicates the default track mapping to apply to all tracks that do not contain any mapping information. The following example specifies FM General MIDI and UltraSound mapping.

MIDI2HMI test.mid test.hmi /MAP:FGU

/MERGE

The merge option will merge all tracks that are on the same channel into one MIDI track during the conversion process. Merging the tracks will help cut down on the processing time required during playback in addition to reducing the overall size of the converted song.

This option must not be used if you have any local loop or local branch controllers on the track(s) that will be merged as it will destroy the local looping and branching ability.

MIDI2HMI test.mid test.hmi /MERGE

/O

The Overwrite option will allow the converter to write over any .HMI files that are of the same name as the files being converted. If this option is not specified, the converter will query the user each time an existing file is encountered.

MIDI2HMI test.mid test.hmi /O

/RATE:

Indicates the rate at which the base timer will be running during application execution. The default rate is 120 times per second and usually will not have to be modified.

Be sure to consult the application programmer if this value needs to be altered.

MIDI2HMI test.mid test.hmi /RATE:180

/SOS30

Retains compatibility loop, branch and call trigger controllers used in version 3.0 of the S.O.S.

MIDI2HMI test.mid test.hmi /SOS30

/USERPAT:

Specify a user defined patch file that you wish to be associated with the song(s) being converted. The file is not bound to the song, however the application may retrieve the name of the patch file to ensure that the correct patch information is used.

MIDI2HMI test.mid test.hmi /USERPAT:mypatch.wav

/VERBOSE

Display all conversion information as the file is converted to the .HMI format.

/?, /HELP

Display quick help information and command line options.

�Special MIDI Controllers

The following controllers are used to control looping, branching, call triggers, and several other events. The controllers are imbedded in the MIDI song and then processed by the converter and later by the MIDI processing system during song playback.

103 Enable controller restoration when branching and looping

When a song is playing and a branch or loop end is reached, the system repositions the song playback position to the desired location. If any controllers have been altered between the start of a loop and the end of the loop they will be restored to the original starting value when the branch or loop end occurs to ensure that they are in the correct state. This, however, may not be desirable if, for instance, the song alters the volume controller (07) to reduce the song volume as it loops. If the volume controller was restored, then the loop would remain at the same volume.

The Enable controller restoration controller is used to re-enable controller restoration during song playback. By default, all controllers will be restored when looping or branching.

The syntax for this controller is:

	103 < data >

Where < data > represents one of the following:

	0 - 102	controller value to enable, i.e. volume, etc..
	103		enable turning notes off when branching/loop end
	104		enable restoring the program change
	105		enable restoring the pitch bend value
	106		enable restoring the aftertouch value
	107		enable restoring the channel pressure value
	115		enable restoring all controllers (default)

104 Disable controller restoration when branching and looping

The Disable controller restoration controller is used to disable controller restoration during song playback. By default, all controllers will be restored when looping or branching.

The syntax for this controller is:

	104 < data >

Where < data > represents one of the following:

	0 - 102	controller value to disable, i.e. volume, etc..
	103		disable turning notes off at branch/loop end
	104		disable restoring the program change
	105		disable restoring the pitch bend value
	106		disable restoring the aftertouch value
	107		disable restoring the channel pressure value
	115		disable restoring all controllers

106 Lock channel

This controller is used to ensure that a specified channel will not be stolen during song play back no matter when the channel priority is. The controller can be used to lock a region of a channel and then release the channel back to the system when the critical part of the piece has completed.

The syntax for this controller is:

106	< data >

Where < data > represents one of the following:

0				release channel back to the system
any other value		lock channel

107 Set channel priority

Each channel in a MIDI song can be assigned its own priority between 0 (highest) and 9 (lowest). This will allow the musician to guarantee that certain channels will always be audible no matter how may songs may be playing in the application. It may be desirable to alter the channels priority for only part of the song. This controller facilitates this process.

The syntax for this controller is:

107	< data >

Where < data > represents one of the following:

0 - 9			priority to assign the channel

108 Local branch location

Sets a location within a single MIDI track that can be branched to by the “Branch to local branch location” (109) controller. There may be up to 127 branch locations on a single track.

The syntax for this controller is:

108	< data >

Where < data > represents one of the following:

0 - 127	branch ID value used with controller 109

109 Branch to local branch location

Branches to a predefined local branch location controller. This will only control branching on a single track, if entire song branch is desired, refer to the “Global” branch controllers.

The syntax for this controller is:

109	< data >

Where < data > represents one of the following:

0 - 127	branch ID value as defined by controller 108

110 Global loop start

Marks the start of a global loop point within a song. This controller designates the number of times to loop a specified song section. Global controllers should be placed on track 1 one of the song to allow easy debugging and to avoid confusion with local controllers. Loops may be nested up to 127 levels.

The syntax for this controller is:

110	< data >

Where < data > represents one of the following:

0 		infinite loop
1 - 127	number of times to loop the song section

111 Global loop end

Designates the end of a global song loop. When this controller is reached, the song position is restored to the matching global loop start position.

The syntax for this controller is:

111

There are no additional parameters for this controller.

113 Global branch location

Sets a location within a MIDI song that can be branched to by the “Branch to global branch location” (114) controller. There may be up to 127 branch locations in a song.

The syntax for this controller is:

113	< data >

Where < data > represents one of the following:

0 - 127	branch ID value used with controller 114

114 Branch to global branch location

Branches to a predefined global branch location controller. This will control branching of the entire song.

The syntax for this controller is:

114	< data >

Where < data > represents one of the following:

0 - 127	branch ID value as defined by controller 1113

116 Local loop start

Marks the start of a local loop point within a song. This controller designates the number of times to loop a specified track section. Loops may be nested up to 127 levels.

The syntax for this controller is:

116	< data >

Where < data > represents one of the following:

0 		infinite loop
1 - 127	number of times to loop the track section

117 Local loop end

Designates the end of a local track loop. When this controller is reached, the track position is restored to the matching local loop start position.

The syntax for this controller is:

117

There are no additional parameters for this controller.

119 Call trigger

Call triggers are useful for notifying the application program when a specific location in the song has been reached. The application must register a function to call with the sosMIDIRegisterTriggerFunction function. There may be up to 127 call triggers in a single song.

The syntax for this controller is:

111 < data >

Where < data > represents the following:

�Controller Quick Reference Table

Controller�Description�Parameters��
103�
Enable Controller Restoration�
See reference
��
104�
Disable Controller Restoration�
See reference
��
106�
Lock Channel�
0 - unlock, any other value locks channel��
107�
Set Channel Priority�
Channel priority��
108�
Local Branch Target�
Branch ID value (0 - 127)��
109�
Local Branch to Target�
Branch ID value to branch to
��
110
�
Global Loop Start�
Number of loops, zero (0) is infinite looping��
111�
Global Loop End�
None��
113�
Global Branch Target�
Branch ID value (0 - 127)��
114�
Global Branch to Target�
Branch ID value to branch to
��
116�
Local Loop Start�
Number of loops, zero (0) is infinite looping��
117�
Local Loop End �
None��
119�
Call Trigger�
ID value to pass to application��
�Composition Tips and Guidelines

The following are some common hints and guidelines to follow when composing music for the S.O.S.

Resetting all used controllers

The song should reset all controllers such as pitch wheel sensitivity, volume, pan position, etc. at the start of each track so that the controllers start in a known state. If the controllers are not reset, a previous song may have left them in some undefined state and can possibly destroy the sound of the next song.

Thinning controllers

If your song contains lots of pitch bend or volume swells, it is advisable to “thin” out some of the controller data. The MIDI sequencer may place lots of data into the MIDI stream when adjusting controllers to provide a very fine resolution. This is fine for use in a sequencer, but creates a lot of additional data for the system to process and can in turn slow down the sequence especially on a General MIDI device such as the MPU-401.

Stay away from special sounds in GM

Each implementation of the General MIDI sound bank will typically vary from manufacturer to manufacturer. As a general rule, it is a good idea to stay away from the sound effects sounds and some of the pad sounds that may not be uniform across all devices.

In addition, try to stay in the “common” range of instruments as most manufacturers “tune” their patch sets for common ranges and may not sound good outside of those ranges.

Minimize the number of tracks and channels

As a general rule when composition for the S.O.S., try not to go “overboard” on the number of channels and tracks used in a song. Keep in mind that the system must process all of the song data in addition to running the game. Do not sacrifice the musical quality, but just remember that the music is not the only event happening during game play.

�Sound Device Setup Program

Sound device selection and set up can be one of the most difficult parts of any application that utilizes sound. There are so many sound devices each with its own compatibility mode and native operating mode. The HMI setup program is provided to alleviate some of the headaches associated with detecting the Port, DMA, and IRQ of a sound device. In addition the setup program allows users to test out the sound device to ensure proper operation.

The HMI setup program is designed to compatible with all current sound devices as well as future devices. All program settings such as device availability, program title, program copyright, and device default settings are controlled via an .ini file similar to the ones used by Microsoft Windows™. The application may specify a digital sample and MIDI song to use when the user selects a testing option.

The sosEZ system provides a simple way to retrieve user settings from the .ini file and setup the sound devices appropriately.

The source code for the setup is available free of charge. You may distribute the HMI setup program free of charge with your application program. The setup program also provides a quick consistent way to verify that a sound device is working correctly.

The setup program uses the file ‘setup.ini’ to locate program initialization and configuration information. The following describes each of the sections in the initialization file and the individual fields.

Program Section

The [PROGRAM] section describes various information including program title, copyright, test files, configuration output file, and patch set information.

[PROGRAM]
Title = HMI Sound Operating System Setup Utility
Copyright = (C) Copyright 1995 - Human Machine Interfaces Inc.
ConfigFile = hmiset.cfg
DigitalTest = test.raw
MIDITest = test.hmi
MIDIMelodic = melodic.bnk
MIDIDrum = drum.bnk
Stereo = No
16Bit = No

Title

The ‘Title’ field contains the program title displayed on the top line of the main setup screen. This field may be up to 78 characters in length and may contain any ASCII characters except a comma (,).

Copyright

The ‘Copyright’ field contains the program copyright notice displayed on the bottom line of the main setup screen. This field also may be up to 78 characters in length and may contain any ASCII characters except a comma (,).

ConfigFile

The ‘ConfigFile’ field indicates what file to write out the final sound device configuration information. The configuration file format is described and the end of the setup program section.

DigitalTest

The ‘DigitalTest’ field contains the name of the sample digital file to play when the user selects the ‘Test Digital’ option in the setup program. This file must fit into memory and cannot be streamed from Harddrive or CD.

MIDITest

The ‘MIDITest’ field contains the name of the sample .HMI file to play when the user selects the ‘Test MIDI’ option in the setup program. Make sure that this file contains device track mapping for all devices.

MIDIMelodic

The ‘MIDIMelodic’ field contains the name of the FM (OPL2/OPL3) patch file (.BNK) to use when testing the MIDI system on a FM device. This patch file contains instrument definitions for all melodic instruments used in the test song.

MIDIDrum

The ‘MIDIDrum’ field contains the name of the FM (OPL2/OPL3) patch file (.BNK) to use when testing the MIDI system on a FM device. This patch file contains instrument definitions for all drum/percussive instruments used in the test song.

Stereo

The ‘Stereo’ field indicates if the application requests a stereo device configuration. If the selected device does not feature stereo output, such as a ‘Sound Blaster’ is selected, the mono driver will be used.

This field is a Yes/No field. Any other value in this field will be treated as a ‘No’ selection.

16Bit

The ‘16Bit’ field indicates if the application requests a 16 bit device configuration. If the selected device does not support 16 bit audio, the 8 bit device will be used instead.

This field is a Yes/No field. Any other value in this field will be treated as a ‘No’ selection.

Digital Section

The [DIGITAL] section describes the available devices for user selection. The format of the device description follows.

Device		 Sound Card Name ID Port DMA IRQ MIDI

[DIGITAL]
Device000 = Sound Blaster , 0xe000, 0x220, 5, 1, 1
Device001 = xyz sound card , 0xe000, 0x220, 5, 1, 1

The ‘DeviceXXX’ element is simply a counter to indicate how many menu items are available for user selection.

The ‘Sound Card Name’ field describes the name of the sound device as it will be listed on the menu when the user is selecting a digital device. The device name may contain any ASCII characters except a comma (,) as it is used to separate the fields on the device line.

The ‘ID’ field represents the internal S.O.S. device ID that the menu selection will use. The allows device that feature compatiblity with other devices to be listed so that the user can easily identify their sound device.

The ‘Port’, ‘DMA’, and ‘IRQ’ fields specify the default values for the sound device settings.

The ‘MIDI’ field designates what MIDI device is most likely attached to the digital sound device. This number is an index into the MIDI device list described below.

Detection Section

The [DETECTION] section defines the order in which digital devices are to be detected when the autodetect option is selected. The ability to alter the detection order can be useful if you wish to make sure that a native mode of a device is detected before a compatibility mode. Typically the compatibility modes do not offer the same features as the native modes.

[DETECTION]
DeviceOrder 	= 	6, 8, 4, 5, 3, 2, 1, 0, 7, 9, 10, 14, 15

The ‘DeviceOrder’ element contains a list of indexes that represent the index in the [DIGITAL] device section. i.e. Device000 would be 0 in the list, Device010 would become 10, etc.

MIDI Section

The [MIDI] section describes the available devices for user selection. The format of the device description follows.

Device		 MIDI Device Description ID MIDI Type

[MIDI]
Device000 = Sound Blaster , 0xa000, 0
Device001 = xyz sound card , 0xa001, 0

The ‘DeviceXXX’ element is simply a counter to indicate how many menu items are available for user selection.

The ‘MIDI Device Description’ element describes the name that will appear on the menu when the user is selecting a MIDI device. The device name may contain any ASCII characters except a comma (,) as it is used to separate the fields on the device line.

The ‘ID’ field represents the internal S.O.S. device ID that the menu selection will use. The allows device that feature compatiblity with other devices to be listed so that the user can easily identify their sound device.

MIDI Settings Section

The [MIDISETTINGS] section describes the available ports for a MIDI device as well as the default port setting.

Device			Default Port 		Available Port List

[MIDISETTINGS]
Device000 = 	4, 0x300, 0x310, 0x320, 0x330, 0x340, 0x350
Device001 = 	4, 0x300, 0x310, 0x320, 0x330, 0x340, 0x350

The ‘DeviceXXX’ element is simply a counter to indicate how many menu items are available for user selection.

The ‘Default Port’ field is the index into the port list of the default port for a particular device.

The ‘Available Port List’ is a list of all available ports for a MIDI device.

��System Architecture and Internal Operation

The following section describes the internal operation and architectural layout of the Sound Operating System. You may wish to become familiar with this section only as a matter of interest, as it is not required to have indepth knowledge of the system to utilize maximum system potential.

The system utilizes device specific ‘drivers’ to communicate with each sound device. In the case of the digital system, the driver performs the tasks of initializing the device, determining device settings such as port, DMA, and IRQ, and starting the system playing back data. In the case of the MIDI system the driver is responsible for initializing the device, uninitializing the device, and sending data to the device. The S.O.S. only loads in the specific driver that is required to support a device. A typical digital driver is between 2K-5K. The MIDI drivers vary in size depending on which device the driver is targeted for. The largest MIDI driver is about 45K.

The following diagram shows the basic layout of the system.

S.O.S. Digital and MIDI Libraries

MIDI Event Dispatcher

Digital Sample Channel Management System

HMI Digital Mixer

Digital Driver

MIDI Driver

�The digital mixer system works by following the DMA controller around the DMA buffer and mixing new data directly ahead of the controller playback position. The allows the system to achieve a very low latency when starting a new sound or adjust a current sounds playback parameters. Each timer tick the mixer measures how far the DMA controller has moved and fills in that number of ‘new’ bytes ahead of the controller to ensure that the DMA buffer always has data to play. The faster (times per second) that the mixer is called, the smaller the number of bytes mixed per tick thus yeilding a better response time when starting a new sound or altering a current sounds parameters.

The system also automatically computes a ‘jump ahead’ value to determine how far ahead of the DMA controller to start playing a new sound. If this value were too small, the DMA controller may ‘pass’ the current mixing position. If this happens, you will notice static in the audio stream as the DMA controller is reading data at the same location as it is being written.

The mixer mixes each sample into a 32 bit temporary sample construction buffer and then copies that buffer into the physical DMA buffer when all active samples have been added into the construction buffer. All data is translated to and mixed as 16 bit signed data and then translated to the correct format when it is copied into the DMA buffer.

Active Sample

Active Sample

Intermediate Mixing Buffer Stored as Signed 16 Bit Data

Physical DMA Buffer, Data Translated to Device Format

The system scales each samples amplitude (volume) as it is mixed into the sample construction buffer. The system uses a multiply instruction, which can be costly on slower processors, but provides the best accuracy when using 16 bit samples and does not sacrafice any fidelity. A volume scaling table could be used in place, but for 16 bit samples the table would be >32K per sample. This obviously would be unacceptable to most application programs. In addition volume tables must be recomputed each time the pan postion or volume of a sample is altered. The could produce significant overhead when processing 3D audio samples or wave-table synthesized music.

If the sample rate of the sample being played is different from the rate of the device, the sample is automatically resampled to retain its original rate. The mixer does not perform any interpolation of the samples when resampling. Aliasing may be present when a sound is resampled.

If more than one sample is playing, the system clips the sample construction buffer waveform so that it does not exceed the maximum (32767) or minimum (-32767) amplitude of 16 bit signed data. If too many samples are playing you may notice “static” or “distortion” being introduced into the output. If this happens you may wish to reduce the volume of your samples to avoid clipping.

�Common Questions and Answers

The following is a list of some of the common questions and problems user's of the system have experienced accompanied with the solution or answer.

�SYMBOL 110 \f "Wingdings"� What is a .RAW file?

A .RAW file is simply an 8 or 16 bit PCM digital sound file with no header information.

�SYMBOL 110 \f "Wingdings"� Why is the Sound Blaster auto-detection locking up the system or returning incorrect results?

The Sound Blaster and Sound Master II are the most difficult of the sound devices to detect. The port can be detected very reliably, but the DMA and IRQ settings are more difficult to detect.

If another device in the system such as a LAN Card uses an IRQ or DMA channel, it may confuse the Sound Operating System. The system attempts to detect which IRQ the Sound Blaster is using by setting up a small DMA sequence and waiting for an IRQ to fire off. If another device fires off an IRQ, then the system will catch that IRQ first instead of the IRQ set off by the Sound Blaster.

Note that the Sound Blaster provides no way of determining if it was the one that fired off the IRQ. Most other sound devices do NOT have this problem since they store the DMA and IRQ information in on-board RAM and are therefor very easy to detect.

�SYMBOL 110 \f "Wingdings"� Does the Sound Operating System provide pitch-shifting of samples?

Yes, refer to the digital system functions sosDIGISetSampleRate and sosDIGIGetSampleRate.
��SYMBOL 110 \f "Wingdings"� Do all of my samples need to be at the same sample rate?

No, all of the data samples to not need to be recorded at the same sample rate because of the way the system mixes the digital channels.

�SYMBOL 110 \f "Wingdings"� Can I stream data from the hard drive?

Yes, example code is provided with the system. The example source file "sample1.c" located on the system disks in the examples directory demonstrates how to stream data to and from the hard drive.

�SYMBOL 110 \f "Wingdings"� How big should I make my DMA buffer? Does is matter?

The DMA buffer can be of any size, from 512 bytes up to 32K.

A buffer of about 4K - 8K is usually sufficient for sample rates of 11025-22050. If you are playing back data at a higher rate, it is advisable to use a larger DMA buffer to increase system performance.

�SYMBOL 110 \f "Wingdings"� How many MIDI songs can be played at once?

The maximum number of songs that can be played simultaneously is 8. Note that you must have channel stealing enabled in order to play more than one song at a time.

�SYMBOL 110 \f "Wingdings"� What if my sound device is not supported?

If your sound device is not supported, contact Human Machine Interfaces, Inc. and provide us with the information about the device, i.e. manufacturer, and we will try to add support for the device.
��SYMBOL 110 \f "Wingdings"� Why won't my MIDI song file play correctly?

Be sure that the track mapping information has been properly placed in the track names inside the MIDI song.

�SYMBOL 110 \f "Wingdings"� There is a popping or clicking sound at the start of each digital sample.

You are probably trying to play a digital sample that contains a header. Note that both Microsoft .WAV and Creative Labs .VOC files contain header information. The Sound Operating System expects samples with no header information.

�SYMBOL 110 \f "Wingdings"� When I initialize the system I hear a pop from the speakers.

Many sound cards pop when they are initialized. There is no real work around for this problem.

�SYMBOL 110 \f "Wingdings"� Why is there no MIDI detection system?

There seems to be no safe way to detect a MPU-401 MIDI type device because its common port of 0x330 is also used by some SCSI controllers and writing values to these controllers could potentially damage the hard disk.

�SYMBOL 110 \f "Wingdings"� Can I loop sections of a MIDI song?

Yes, please refer to the MIDI section of this manual. Both global and individual track looping are supported by the system. In addition, the system supports branch points and call back triggers.

�SYMBOL 110 \f "Wingdings"� Can I loop the entire MIDI song?

Yes, you can set up a call back for a MIDI song and have the call back routine call the sosMIDIStartSong function to restart the song.

�SYMBOL 110 \f "Wingdings"� Can I register my own functions with the SOS timer system?

Yes, you may register up to 16 timer events with the SOS timer system. Note that each MIDI song takes up one timer event and an additional event is needed for playing digital sound.

��SYMBOL 110 \f "Wingdings"� Some of my MIDI tracks seem to disappear when I loop a song.

Make sure there is a volume controller (0x07) at the beginning of each track to set the track volume you desire. If the song ends, all volume controllers are set to 0 so the volume controllers must be reset before the song can be played again.

�
�Appendix A

System Hardware ID Reference

Adlib Gold 1000/2000

_ADLIB_GOLD_8_MONO			Adlib Gold 8 bit mono playback
_ADLIB_GOLD_8_ST			Adlib Gold 8 bit stereo playback
_ADLIB_GOLD_16_MONO			Adlib Gold 16 bit mono playback
_ADLIB_GOLD_16_ST			Adlib Gold 16 bit stereo playback
_ADLIB_GOLD_8_MONO_R			Adlib Gold 8 bit mono recording

Ensoniq Soundscape

_SOUNDSCAPE_8_MONO			Soundscape 8 bit mono playback
_SOUNDSCAPE_8_ST			Soundscape 8 bit stereo playback
_SOUNDSCAPE_16_MONO			Soundscape 16 bit mono playback
_SOUNDSCAPE_16_ST			Soundscape 16 bit stereo playback
_SOUNDSCAPE_8_MONO_R			Soundscape 8 bit mono recording
_SOUNDSCAPE_8_ST_R			Soundscape 8 bit stereo recording
_SOUNDSCAPE_16_MONO_R			Soundscape 16 bit mono recording
_SOUNDSCAPE_16_ST_R			Soundscape 16 bit stereo recording

ESS 488/688 AudioDrive

_ESS_AUDIODRIVE_8_MONO			ESS Audiodrive 8 bit mono playback
_ESS_AUDIODRIVE_8_ST			ESS Audiodrive 8 bit stereo playback
_ESS_AUDIODRIVE_16_MONO		ESS Audiodrive 16 bit mono playback
_ESS_AUDIODRIVE_16_ST			ESS Audiodrive 16 bit stereo playback
_ESS_AUDIODRIVE_8_MONO_R		ESS Audiodrive 8 bit mono recording
_ESS_AUDIODRIVE_8_ST_R			ESS Audiodrive 8 bit stereo recording
_ESS_AUDIODRIVE_16_MONO_R		ESS Audiodrive 16 bit mono recording
_ESS_AUDIODRIVE_16_ST_R		ESS Audiodrive 16 bit stereo recording

Gravis Ultrasound

_GUS_8_MONO				Gravis Ultrasound 8 bit mono playback
_GUS_8_ST				Gravis Ultrasound 8 bit stereo playback
_GUS_16_MONO				Gravis Ultrasound 16 bit mono playback
_GUS_16_ST				Gravis Ultrasound 16 bit stereo playback

Gravis Ultrasound MAX

_GUS_MAX_8_MONO			Gravis Ultrasound MAX 8 bit mono playback
_GUS_MAX_8_ST				Gravis Ultrasound MAX 8 bit stereo playback
_GUS_MAX_16_MONO			Gravis Ultrasound MAX 16 bit mono playback
_GUS_MAX_16_ST				Gravis Ultrasound MAX 16 bit stereo playback

�Appendix A

System Hardware ID Reference

Microsoft Sound System

_MICROSOFT_8_MONO			Microsoft 8 bit mono playback
_MICROSOFT_8_ST			Microsoft 8 bit stereo playback
_MICROSOFT_16_MONO			Microsoft 16 bit mono playback
_MICROSOFT_16_ST			Microsoft 16 bit stereo playback
_MICROSOFT_8_MONO_R			Microsoft 8 bit mono recording

Pro Audio Spectrum / 16

_MV_PAS_8_MONO				Pro Audio 8 bit mono playback
_MV_PAS_8_ST				Pro Audio 8 bit stereo playback
_MV_PAS_16_MONO			Pro Audio 16 bit mono playback
_MV_PAS_16_ST				Pro Audio 16 bit stereo playback

Roland RAP-10

_RAP10_8_MONO				RAP10 8 bit mono playback
_RAP10_16_MONO				RAP10 16 bit mono playback
_RAP10_8_MONO_R			RAP10 8 bit mono recording

Sound Blaster

_SOUND_BLASTER_8_MONO			Sound Blaster 8 bit playback
_SOUND_BLASTER_8_MONO_R		Sound Blaster 8 bit recording

Sound Blaster Pro

_SOUND_BLASTER_8_ST			Sound Blaster Pro 8 bit stereo playback

Sound Blaster ASP/16 / Sound Blaster AWE32

_SB16_8_MONO				Sound Blaster 16 8 bit mono playback
_SB16_8_ST				Sound Blaster 16 8 bit stereo playback
_SB16_16_MONO				Sound Blaster 16 16 bit mono playback
_SB16_16_ST				Sound Blaster 16 16 bit stereo playback
_SB16_8_MONO_R				Sound Blaster 16 8 bit mono recording
_SB16_8_ST_R				Sound Blaster 16 8 bit stereo recording
_SB16_16_MONO_R			Sound Blaster 16 16 bit mono recording
_SB16_16_ST_R				Sound Blaster 16 16 bit stereo recording

Sound Master II

_SOUND_MASTER_II_8_MONO		Sound Master II 8 bit mono playback
_SOUND_MASTER_II_8_MONO_R		Sound Master II 8 bit mono recording

 �Appendix B

Using your own timer handling system

This section describes what is required to utilize an application’s own timer handler and to process digital audio and MIDI music with the S.O.S.

To use an application’s own timer, the program still needs to initialize the SOS timer system. The TIMER system is initialized using special flags as follows:

To have S.O.S. chain through to DOS:

	sosTIMERInitSystem(_TIMER_DOS_RATE, _SOS_DEBUG_NO_TIMER);

The application timer handles chain through to DOS:

	sosTIMERInitSystem(0, _SOS_DEBUG_NO_TIMER);

Calling the sosTIMERInitSystem function with the _SOS_DEBUG_NO_TIMER flag initializes the timer system in a normal fashion. The only difference is that it does not alter the timer rate or hook the timer interrupt vector.

Timer events may be registered normally with the sosTIMERRegisterEvent function. The application must call the function sosTIMERHandler at the fastest rate registered with the S.O.S. system by the sosTIMERRegisterEvent function.

The prototype for the handler function is as follows:

	void	sosTIMERHandler(void);

The function responsible for handling the timer interrupt and calling the sosTIMERHandler function must set up an internal stack of at least 2K before calling the S.O.S. handler function.

The S.O.S. timer system provides reentrancy protection and preserves all registers used in the digital and MIDI functions.

�PAGE �

Sound Operating System General Reference 1 - � PAGE �888�

Sound Operating System Quick Start / sosEZ Reference 2 - � PAGE �10109�

Sound Operating System Data Structures Reference 3 - � PAGE �252525�

Sound Operating System Function Reference 4 - � PAGE �727226�

Sound Operating System Musicians Reference 5 - � PAGE �14819�

Sound Operating System Setup Program 6 - � PAGE �555�

Sound Operating System Miscellaneous Reference 7 - � PAGE �777�

Sound Operating System Appendices 8 - � PAGE �333�

